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ABSTRACT
Strategic behavior against sequential learning methods, such

as “click framing” in real recommendation systems, have been

widely observed. Motivated by such behavior we study the

problem of combinatorial multi-armed bandits (CMAB) un-

der strategic manipulations of rewards, where each arm can

modify the emitted reward signals for its own interest. This

characterization of the adversarial behavior is a relaxation of

previously well-studied settings such as adversarial attacks

and adversarial corruption. We propose a strategic variant of

the combinatorial UCB algorithm, which has a regret of at most

𝑂 (𝑚 log𝑇 +𝑚𝐵𝑚𝑎𝑥 ) under strategic manipulations, where 𝑇

is the time horizon, 𝑚 is the number of arms, and 𝐵𝑚𝑎𝑥 is

the maximum budget of an arm. We provide lower bounds on

the budget for arms to incur certain regret of the bandit algo-

rithm. Extensive experiments on online worker selection for

crowdsourcing systems, online influence maximization and

online recommendations with both synthetic and real datasets

corroborate our theoretical findings on robustness and regret

bounds, in a variety of regimes of manipulation budgets.
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1 INTRODUCTION
Sequential learning methods feature prominently in a range

of real applications such as online recommendation systems,

crowdsourcing systems, and online influence maximization

problems. Among those methods, the multi-armed bandits

problem serves as a fundamental framework. Its simple yet

powerful model characterizes the dilemma of exploration and
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exploitation which is critical to the understanding of online se-

quential learning problems and their applications [3, 23, 32, 38].

The model describes an iterative game constituted by a bandit

algorithm and many arms. The bandit algorithm is required to,

through a horizon 𝑇 , choose an arm to pull at each time step.

As the objective is to maximize the cumulative reward over

time, the algorithm balances between exploiting immediate

rewards based on the information collected or pulling less

explored arms to gain more information about arms [2, 4, 10].

Out of the real applications, many motivate the extension

of MAB towards combinatorial multi-armed bandits (CMAB),

where multiple arms can be selected in each round [11, 12,

27, 31, 45]. CMAB demonstrates its effectiveness on problems

like online social influence maximization, viral marketing, and

advertisement placement, within which many offline variants

are NP-hard. However, existing MAB and CMAB algorithms

are often developed either under benign assumptions on the

arms [11, 22, 43] or purely adversarial arms [5]. In the former

setting, the arms are commonly assumed to report their reward

signals truthfully without any strategic behavior, under which

the drawbacks are apparent. In the latter setting, arms can

attack any deployed algorithm to regret of 𝑂 (𝑇 ) with this

capability of reward manipulations, which is catastrophic for

a bandit algorithm. This assumption is stringent and rarely

realistic.

In this paper, we adapt the combinatorial UCB (CUCB) algo-

rithm with a carefully designed UCB-based exploration term.

A major difficulty stems from not knowing the manipulation

termmade by the arms, while our algorithm overcomes this by

depending only on the knowledge of the maximum possible

strategic budget. Previous results by [14] only implies robust-

ness of UCB style algorithm under stochastic multi armed

bandits setting under only full knowledge of step wise de-

ployment of strategic budget. New tail bounds over the pro-

posed exploration term and a new trade-off parameter that

balances exploration and exploitation are utilized to facilitate

the analysis of our algorithm. We further establish results on

the robustness of our UCB variant under strategic arms with

an algorithm-dependent budget lower bound.

Our proposed algorithms are also evaluated empirically

through an extensive set of synthetic environments and real

datasets. The real applications include reliable workers selec-

tion in online crowdsourcing systems, where workers might

misrepresent a result for a better chance to be selected in the

future; online information maximization, where nodes modify

the spread to include itself into the seed set; and online recom-

mendation systems, which characterizes the “click framing”
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behavior. Through a wide range of tasks and parameters, the

experiment results corroborate our theoretical findings and

demonstrate the effectiveness of our algorithms.

1.1 Motivating Examples
The setting of strategic manipulations describes the strategic

behavior found in a variety of real applications. Consider a

crowdsourcing platform that provides a data labeling service

for payment. The platform interacts with a group of customers

and a pool of workers. The customers request tasks to the

platform for labeling and the platform is then responsible for

selecting workers from the worker pool to complete the tasks.

This process repeats, during which the platform learns the

best deployment. We maintain a mild assumption that the

payments from customers are non-decreasing with the quality

of labels. To maximize its profit, it is desired for the platform

to select workers that provides the most reliable labels. The

workflow of the platform can be described in the diagram

below.

While the platform and the customers desire quality labels,

it may not entirely be in the worker’s interest to exert the

highest effort and thus report quality labels each time, which

factors into a range of reasons. Workers may adapt strategic

behaviors to maximize their own utility instead. Thus, it be-

comes crucial to identify reliable workers to prevent strategic

behaviors that jeopardize profits. This naturally translates to

a multi-armed bandits problem under strategic manipulations

where the workers are the strategic arm and the payments act

as the rewards. Under ideal assumptions it had shown the effec-

tiveness of bandits algorithms on such problems [19, 30, 39].

Figure 1: Online crowdsourcing system

2 RELATEDWORK
The problem of multi-armed bandits (MAB) was first investi-

gated back in 1952 while some techniques utilized were de-

veloped back in 1933 [3, 6, 23, 32, 38]. Since then it has been

extensively explored and serves as the foundation of many

modern areas, including reinforcement learning, recommen-

dation systems, graph algorithms, etc. [8, 13, 24, 25, 40]. With

the need to model the selection of multiple arms in one round,

MAB is then extended to combinatorial multi-armed bandits

(CMAB), which see many deployments in real applications

like news/goods recommendation, medical trials, routing, and

so forth [26, 34, 36, 42].

Real applications motivate the community to derive algo-

rithms in more adaptive environments. The first of which

considers adversarial bandits with the classic EXP3 algorithm.

The arms are assumed to be non-stationary but non-adaptive

(which means that algorithms will adapt to the adversarial)

[5]. Despite that adversarial bandits do not fall into the scale

of this paper’s related work, it leads tremendous effort to the

following topics in adaptive arms.

Adversarial corruptions. The adversary is given the ability to
replace the observations of the bandit algorithm with arbitrary

values within some constraints. Gupta et al. [17] discuss the

constraint that rewards are modified for at most𝑇0 rounds out

of the total 𝑇 rounds. The asymptotic regret bound 𝑂 (𝑚𝑇0)
achieved in the work is shown to match the negative result,

where𝑚 is the number of arms. Lykouris et al. [29] discussed

a different constraint where the corruption 𝑧𝑡 at time 𝑡 is

cumulative up to some constant 𝐵. The regret achieved under

this constrained corruption is bounded by 𝑂 (𝑚𝐵 log(𝑚𝑇
𝛿
))

with probability at least 1 − 𝛿 . Altschuler et al. [1] restricts
corruptions as independent Bernoulli events with probability𝑏,

while if corruption happens the reward becomes arbitrary and

adversarial. This problem is addressed with median statistics

with gap-dependent matching regret upper and lower bounds

of𝑂 (∑𝑖≠𝑖∗ 1
Δ𝑖

log( 𝐾Δ𝑖
)), where 𝑖∗ denotes the optimal arm and

Δ𝑖 is the suboptimality of arm 𝑖 .

Several lines of research also discuss corruption topics in

frequentist inference and partial monitoring [15], best arm

identification [17], and adversarial bandits [44].

Adversarial attacks. Different from arms in adversarial cor-

ruptions who intend to maximize the regret of the bandit

algorithm, arms in the adversarial attack setting have the goal

to maximize their number of pulls. The setting is first con-

sidered by Jun et al. [20], where it shows that the attacker

may spend a budget of 𝑂 (log𝑇 ) to deceit UCB and 𝜖-greedy

algorithms to pull the target arms for at least 𝑇 − 𝑜 (𝑇 ) times.

Stochastic and contextual MAB algorithms also suffer from

undesired loss from this adversarial attack, under a variety of

attack strategies [28]. Linear MAB algorithms, however, are

shown to be near-optimal up to some linear or quadratic terms

on the attack budget 𝐵 [7, 16].

Strategic manipulations. The setting of strategic manipula-

tions further weakens the capability of the adaptive arms and

prevents the bandit algorithms from being overcautious. The

objective of an arm is still utility maximization under strategic

manipulations, while each arm works on its utility individu-

ally. Instead of having a global coordinator for the adversarial

attack strategy, the strategic arms seek the best response via

the dominant Nash equilibrium. The strategic manipulation

setting is first studied by Braverman et al. [9] where each arm

is assumed to keep a portion of the reward in each round and

arms maximize the cumulative reward it keeps. The perfor-

mance of bandit algorithms will then be catastrophic under

the dominant Nash equilibrium, receiving an expected cumula-

tive reward of 0 almost surely. With the utility of maximizing

the number of pulls for each strategic arm, common bandits

algorithms are proved to be robust with guaranteed 𝑂 (log𝑇 )
regret bound, but only under constant strategic budgets [14].



For 𝜔 (log𝑇 ) budgets, bandits under strategic manipulations

remain an open problem and will be discussed in this paper.

3 PROBLEM FORMULATION
We consider the problem of combinatorial multi-armed ban-

dits (CMAB) under the setting of strategic arms. In strategic

CMAB, each arm is given a budget and the arm can strategi-

cally increase its emitted reward signals cumulatively up to

this budget for its own interest. This problem is a Stackelberg

game that involves two parties. The bandit learning algorithm

is deployed first to maximize its cumulative reward under

the best response of the followers. The 𝑚 strategic bandits

arms then deplete their budget where each of them aims to

maximize its expected number of pulls. Knowing the princi-

pal’s strategy and other followers’ budget information, the

followers are assumed to place their strategies according to

the dominant Nash equilibrium between them.

Formally, given a time horizon 𝑇 , the the bandit learning

algorithm is asked to pull a subset of arms, denoted by an

arm subset 𝑆𝑡 ∈ S at each time 𝑡 ∈ [𝑇 ], where S = {0, 1}𝑚
is the set of all possible arm subsets. At the time 𝑡 , based on

the principal’s choice of arm subset, stochastic rewards 𝑥𝑖,𝑡
are generated by arm 𝑖 from the underlying 1-sub-Gaussian
distribution with mean 𝜇𝑖 , independent of other arms in 𝑆𝑡 .

The principal does not observe these rewards. Instead, each

arm can increase the emitted reward signal by an arbitrary

amount 𝑧𝑖,𝑡 ≥ 0, as long as the cumulative manipulation over

the horizon does not exceed a given budget 𝐵𝑖 . The principal

then receives the semi-bandit feedback {𝑥𝑖,𝑡 + 𝑧𝑖,𝑡 }𝑖∈𝑆𝑡 .
Let 𝝁 = (𝜇1, 𝜇2, ..., 𝜇𝑖 ) be the vector of expectations of all

arms. The expected reward of playing any arm subset S in any

round 𝑟𝝁 (𝑆) = E[𝑅𝑡 (𝑆)],which is a function of arm subset 𝑆

and 𝝁. The reward function 𝑟𝝁 (𝑆) is assumed to satisfy two

axioms:

• Monotonicity. The expected reward of playing any

arm subset 𝑆 ∈ S is monotonically non-decreasing

with respect to the expected reward vector. That is, if

for all 𝑖 ∈ [𝑚], 𝜇𝑖 ≤ 𝜇 ′
𝑖
, then 𝑟𝝁 (𝑆) ≤ 𝑟𝝁′ (𝑆).

• Bounded smoothness. There exists a strictly increas-

ing function 𝑓 (·), termed the bounded smoothness func-

tion, such that for any two expected reward vectors 𝝁
and 𝝁 ′

satisfying ∥𝝁 − 𝝁 ′∥∞ ≤ Λ, we have |𝑟𝝁 − 𝑟𝝁′ | ≤
𝑓 (Λ).

These axioms cover a rich set of reward functions and the

explicit forms of𝑅𝑡 (𝑆) and 𝑟𝝁 (𝑆) are not needed to be specified
[11].

Without loss of generality, assume that 𝑆∗ = argmax𝑆⊆S 𝑟𝝁 (𝑆)
is the unique optimal subset of arms. When placing reward

manipulations, each strategic arm has access to its own his-

tory ℎ𝑖,𝑡 = {𝐼𝑖,𝑡 ′ ,𝑥𝑖,𝑡 ′ , 𝑧𝑖,𝑡 ′}𝑡 ′≥1, where 𝐼𝑖,𝑡 ′ is the indicator of
whether arm 𝑖 is pulled at time 𝑡 ′ and 𝑡 ′ < 𝑡 . The strategy

of arm 𝑖 is determined by a function that maps this history

to a manipulation 𝑧𝑖,𝑡 , as 𝑍𝑖,𝑡 : ℎ𝑖,𝑡−1 → R. Without loss of

generality, we assume that arms in the optimal arm subset

𝑖 ∈ 𝑆∗ have strategic budgets of 0, which restricts their 𝑧𝑖,𝑡 to

be 0.

In the combinatorial setting, even with the exact reward

vector 𝝁 provided, it can be hard to exactly compute the opti-

mized 𝑟𝝁 (𝑆). In view of this, many have studied probabilistic

approximation algorithms in combinatorial problems, which

indicates that an (𝛼, 𝛽)-approximation oracle defined below

can be usually available.

Definition 1 (Approximation oracle). Let 0 ≤ 𝛼, 𝛽 ≤ 1
and define𝑂𝑃𝑇 𝝁 = max𝑆 ∈S 𝑟𝝁 (𝑆). An oracle is called an (𝛼, 𝛽)-
approximation oracle if it takes an expected reward vector 𝝁 as
input and outputs an arm subset 𝑆 ∈ S such that P(𝑟𝝁 (𝑆) ≥
𝛼 ·𝑂𝑃𝑇 𝝁 ) ≥ 𝛽 . That is, the oracle gives an arm subset 𝑆 that is
at least as good as 𝛼 times the reward of an optimal arm subset
with probability at least 𝛽 .

Denote 𝑆𝐵 = {𝑟𝝁 (𝑆) < 𝛼 · 𝑂𝑃𝑇 𝝁 |𝑆 ∈ S} to be the set of

suboptimal arm subsets under the approximation oracle. Note

that a suboptimal arm subset can be given by the oracle for

two reasons. The (𝛼, 𝛽)-approximation oracle can fail, which

happens with probability at most 1 − 𝛽 . The estimation of

𝝁 can deviate from the true value by a significant amount,

resulting in accurate input to the oracle.

The objective of the principal is to maximize the expected

cumulative reward before manipulation over the time hori-

zon 𝑇 . Equivalently, the principal minimizes the regret, the

cumulative difference between the scaled optimal reward and

expected actual reward, as defined below.

Definition 2 (Regret). With access to an (𝛼, 𝛽)-approximation
oracle, the regret of a combinatorial bandit algorithm for 𝑇
rounds is

𝑅𝑒𝑔𝑟𝑒𝑡𝝁,𝛼,𝛽 (𝑇 ) = 𝑇 · 𝛼 · 𝛽 ·𝑂𝑃𝑇 𝝁 − E
[ 𝑇∑︁
𝑡=1

𝑟𝝁 (𝑆𝑡 )
]
,

where the randomness in E[∑𝑇𝑡=1 𝑟𝝁 (𝑆𝑡 )] involves the stochas-
ticity of the bandit algorithm and the oracle.

The objective of each strategic arm 𝑖 ∈ [𝑚] \ 𝑆∗, however,
is to maximize the number

∑𝑇
𝑡=1 𝐼𝑖,𝑡 of times it is pulled over

the time horizon. To achieve this, the arm needs to confuse

the principal by deviating the emitted reward signals up to

the possessed budget.

4 STRATEGIC COMBINATORIAL UCB
We now propose a variant of combinatorial upper confidence

bound algorithm that is robust to strategic manipulations of

rewards in Algorithm 1. The only mild assumption we main-

tain is that the learning algorithm has the knowledge of the

largest budget possessed among all bandits arms, i.e, 𝐵𝑚𝑎𝑥 .

This is a relaxation of the assumptions made by Feng et al.

[14] on the strategic UCB algorithm, in which the learning

algorithm has access to the cumulative use of budget at every

time step. We start with a detailed description of the algorithm

and then analyze the theoretical upper bound of regret, which

enjoys 𝑂 (𝑚 log𝑇 +𝑚𝐵𝑚𝑎𝑥 ).
For each arm 𝑖 , our algorithm maintains a counter 𝐾𝑖,𝑡−1

as the total number of times arm 𝑖 has been pulled up to time

𝑡−1 and 𝜇̃𝑖,𝑡 =
∑𝑡−1

𝑗=1 (𝑥𝑖,𝑗+𝑧𝑖,𝑗 )
𝐾𝑖,𝑡−1

as the empirical mean estimation

based on the observations. At each time step, the algorithm



computes the UCB estimation 𝜇𝑖,𝑡 = 𝜇̃𝑖,𝑡 +
√︃

3 log 𝑡
2𝐾𝑖,𝑡−1

+ 𝐵𝑚𝑎𝑥

𝐾𝑖,𝑡−1
for 𝑖 ∈ [𝑚]. With 𝜇𝑖,𝑡 , the (𝛼, 𝛽)-approximation oracle then

outputs an approximately optimal arm subset 𝑆𝑡 ∈ S. The
algorithm plays the return arm subset and update the counter

𝐾𝑖,𝑡 and the estimation 𝜇̃𝑖,𝑡 accordingly.

Algorithm 1: SCUCB

1 Input: Horizon 𝑇 , number𝑚 of arms, maximum

budget 𝐵𝑚𝑎𝑥

2 Output: Arm subset 𝑆𝑡

3 Initialize 𝐾𝑖,0 = 0 and 𝜇̃𝑖,0 = 0 for 𝑖 ∈ [𝑚]
4 for t = 1 → m do
5 Play an arbitrary arm subset 𝑆𝑡 ∈ S such that

𝑡 ∈ 𝑆𝑡
6 𝐾𝑖,𝑡 = 𝐾𝑖,𝑡−1 + 1 for 𝑖 ∈ 𝑆𝑡
7 𝜇̃ 𝑗 = 𝑥𝑖,𝑡 + 𝑧𝑖,𝑡 for 𝑖 ∈ 𝑆𝑡
8 for t = m+1 → T do
9 For 𝑖 ∈ [𝑚], compute

𝜇𝑖,𝑡 = 𝜇̃𝑖,𝑡−1 +
√︃

3 log 𝑡
2𝐾𝑖,𝑡−1

+ 𝐵𝑚𝑎𝑥

𝐾𝑖,𝑡−1

10 𝑆𝑡 = oracle(𝜇1,𝑡 , 𝜇2,𝑡 , ....., 𝜇𝑚,𝑡 )
11 Play arm subset 𝑆𝑡 and update 𝐾𝑖,𝑡 = 𝐾𝑖,𝑡−1 + 1

and 𝜇̃𝑖,𝑡 =

∑𝑡
𝑗=1 (𝑥𝑖,𝑗+𝑧𝑖,𝑗 )

𝐾𝑖,𝑡
for 𝑖 ∈ 𝑆𝑡

We first introduce a few notations that are used in our

results. Define, for any arm 𝑖 ∈ [𝑚], the suboptimality gaps as

Δ𝑖𝑚𝑖𝑛 = 𝛼 ·𝑂𝑃𝑇 𝝁 −max{𝑟𝝁 (𝑆) | 𝑆 ∈ 𝑆𝐵 , 𝑖 ∈ 𝑆} ,
Δ𝑖𝑚𝑎𝑥 = 𝛼 ·𝑂𝑃𝑇 𝝁 −min{𝑟𝝁 (𝑆) | 𝑆 ∈ 𝑆𝐵 , 𝑖 ∈ 𝑆} .

We then denote themaximum andminimum of the suboptimal-

ity gaps asΔ𝑚𝑎𝑥 = max𝑖∈[𝑚] Δ
𝑖
𝑚𝑎𝑥 andΔ𝑚𝑖𝑛 = min𝑖∈[𝑚] Δ

𝑖
𝑚𝑖𝑛

.

The following lemma re-establish the canonical tail bound

inequality in UCB under the setting of strategic manipulations.

Lemma 3. Let Λ𝑖,𝑡 =
√︃

3 log 𝑡
2𝐾𝑖,𝑡−1

+ 𝜌𝑖,𝑡−1
𝐾𝑖,𝑡−1

, where 𝜌𝑖,𝑡−1 is the
total strategic budget spent by arm 𝑖 up to time 𝑡−1 and𝐾𝑖,𝑡−1 be
the total number of pulls of arm 𝑖 up to time 𝑡−1. Define the event
𝐸𝑡 = {| 𝜇̃𝑖,𝑡−1−𝜇𝑖 | ≤ Λ𝑖,𝑡 ,∀𝑖 ∈ [𝑚]}, where 𝜇𝑖 is the true mean
of arm 𝑖’s underlying distribution. Then, P(¬𝐸𝑡 ) ≤ 2𝑚 · 𝑡−2.

Armed with Lemma 3, we present one of our main theo-

rems, Theorem 4, which gives the regret bound of 𝑂 (log𝑇 )
of SCUCB. The outline of the proof follows that of CUCB by

Chen et al. [11]. To complete the proof, we carefully choose

𝜓𝑡 , which controls the trade-off between the exploration and

exploitation periods.

Theorem 4. The regret of the SCUCB algorithm with 𝑚
strategic arms in time horizon 𝑇 using an (𝛼, 𝛽)-approximation
oracle is at most

𝑚 · Δ𝑚𝑎𝑥

(
8𝐵𝑚𝑎𝑥 𝑓

−1 (Δ𝑚𝑖𝑛) + 6 log𝑇(
𝑓 −1 (Δ𝑚𝑖𝑛)

)2 + 𝜋
2

3
+ 1

)
,

where 𝑓 −1 (·) is the inverse bounded smoothness function.

Proof sketch. We introduce a counter 𝑁𝑖 for each arm

𝑖 ∈ [𝑚] after the 𝑚-round initialization and let 𝑁𝑖,𝑡 be the

value of 𝑁𝑖 at time 𝑡 . We initialize 𝑁𝑖,𝑚 = 1. By definition,∑
𝑖∈[𝑚] 𝑁𝑖,𝑚 = 𝑚. For 𝑡 > 𝑚, the counter 𝑁𝑖,𝑡 is updated as

follows:

• If 𝑆𝑡 ∈ 𝑆𝐵 , then𝑁𝑖′,𝑡 = 𝑁𝑖′,𝑡−1+1where 𝑖 ′ = argmin𝑖∈𝑆𝑡
𝑁𝑖,𝑡−1. In the case that 𝑖 ′ is not unique, we break ties

arbitrarily;

• If 𝑆𝑡 ∉ 𝑆𝐵 , then no counters will be updated.

As such, the total number of pulls of suboptimal arm subsets

is less than or equal to

∑𝑚
𝑖=1 𝑁𝑖,𝑇 .

Define 𝜓𝑡 =
8𝐵𝑚𝑎𝑥 𝑓

−1 (Δ𝑚𝑖𝑛)+6 log 𝑡
(𝑓 −1 (Δ𝑚𝑖𝑛))2

> 𝑐 , where 𝑐 is the

larger solution of

(𝑓 −1 (Δ𝑚𝑖𝑛))2𝑐2 + 16𝐵2𝑚𝑎𝑥 − ((8𝐵𝑚𝑎𝑥 𝑓 −1 (Δ𝑚𝑖𝑛) − 6 log 𝑡)𝑐 = 0 .

Then, we decompose the total number

∑𝑚
𝑖=1 𝑁𝑖,𝑇 of pulls of

suboptimal arm subsets as

𝑚∑︁
𝑖=1

𝑁𝑖,𝑇 =𝑚 +
𝑇∑︁

𝑡=𝑚+1
I{𝑆𝑡 ∈ 𝑆𝐵}

=𝑚 +
𝑇∑︁

𝑡=𝑚+1

𝑚∑︁
𝑖=1

I{𝑆𝑡 ∈ 𝑆𝐵 ,𝑁𝑖,𝑡 > 𝑁𝑖,𝑡−1,𝑁𝑖,𝑡−1 ≤ 𝜓𝑡 }

+
𝑇∑︁

𝑡=𝑚+1

𝑚∑︁
𝑖=1

I{𝑆𝑡 ∈ 𝑆𝐵 ,𝑁𝑖,𝑡 > 𝑁𝑖,𝑡−1,𝑁𝑖,𝑡−1 > 𝜓𝑡 }

≤𝑚 +𝑚𝜓𝑇 +
𝑇∑︁

𝑡=𝑚+1
I{𝑆𝑡 ∈ 𝑆𝐵 ,𝑁𝑖,𝑡−1 > 𝜓𝑡 ,∀𝑖 ∈ 𝑆𝑡 } .

The inequality follows as

∑𝑇
𝑡=𝑚+1

∑𝑚
𝑖=1 I{𝑆𝑡 ∈ 𝑆𝐵 ,𝑁𝑖,𝑡 >

𝑁𝑖,𝑡−1,𝑁𝑖,𝑡−1 ≤ 𝜓𝑡 } can be trivially bounded by𝑚𝜓𝑇 . Thus

the key to bound the total number of pulls of suboptimal

arm subset is to upper bound

∑𝑇
𝑡=𝑚+1 I{𝑆𝑡 ∈ 𝑆𝐵 ,𝑁𝑖,𝑡−1 >

𝜓𝑡 ,∀𝑖 ∈ 𝑆𝑡 }. Let 𝐹𝑡 denotes the event that the oracle fails to
provide an 𝛼-approximate arm subset with respect to the input

vector 𝝁 = (𝜇1,𝑡 , 𝜇2,𝑡 , ....., 𝜇𝑚,𝑡 ). Then we can decompose∑𝑇
𝑡=𝑚+1 I{𝑆𝑡 ∈ 𝑆𝐵 ,𝑁𝑖,𝑡−1 > 𝜓𝑡 ,∀𝑖 ∈ 𝑆𝑡 } as

𝑇∑︁
𝑡=𝑚+1

I{𝑆𝑡 ∈ 𝑆𝐵 ,𝑁𝑖,𝑡−1 > 𝜓𝑡 ,∀𝑖 ∈ 𝑆𝑡 }

≤
𝑇∑︁

𝑡=𝑚+1
(I{𝐹𝑡 } + I{¬𝐹𝑡 , 𝑆𝑡 ∈ 𝑆𝐵 ,𝐾𝑖,𝑡−1 > 𝜓𝑡 ,∀𝑖 ∈ 𝑆𝑡 })

≤ (𝑇 −𝑚) (1 − 𝛽) + I{¬𝐹𝑡 , 𝑆𝑡 ∈ 𝑆𝐵 ,𝐾𝑖,𝑡−1 > 𝜓𝑡 ,∀𝑖 ∈ 𝑆𝑡 } .
By leveraging the monotonicity and smoothness assump-

tions of the reward function, we show that P({¬𝐹𝑡 ,𝐸𝑡 , 𝑆𝑡 ∈
𝑆𝐵 ,𝐾𝑖,𝑡−1 > 𝜓𝑡 ,∀𝑖 ∈ 𝑆𝑡 }) = 0. Therefore, by the inclusion-

exclusion principle,

P({¬𝐹𝑡 , 𝑆𝑡 ∈ 𝑆𝐵 ,𝐾𝑖,𝑡−1 > 𝜓𝑡 ,∀𝑖 ∈ 𝑆𝑡 }) ≤ P(¬𝐸𝑡 ) ≤ 2𝑚 · 𝑡−2 .
Leveraging the upper bound of total number of pulls of

suboptimal arm subsets, the regret is bounded by

𝑅𝑒𝑔𝑟𝑒𝑡𝝁,𝛼,𝛽 (𝑇 )

≤ 𝑇𝛼𝛽 · OPT𝝁 −
(
𝑇𝛼 · OPT𝝁 − E

[
𝑚∑︁
𝑖=1

𝑁𝑖,𝑇

]
· Δ𝑚𝑎𝑥

)



≤ 𝑚 · Δ𝑚𝑎𝑥

(
8𝐵𝑚𝑎𝑥 𝑓

−1 (Δ𝑚𝑖𝑛) + 6 log𝑇(
𝑓 −1 (Δ𝑚𝑖𝑛)

)2 + 𝜋
2

3
+ 1

)
. □

It remains in question whether a bandit algorithm can

achieve a regret upper bound sublinear in 𝐵𝑚𝑎𝑥 . Our con-

jecture is negative. In fact, under strategic manipulations of

rewards, the design of robust bandit algorithms, e.g. UCB and

𝜖-greedy, is analogous to the design of outlier-robust mean esti-

mation algorithms. Existing works on robust mean estimation,

such as Steinhardt et al. [35], argue that from an information

theoretical point of view mean estimation error must be de-

pending on the variance of the data. Casting this argument

to bandit with the strategic manipulation setting, we believe

that a tight regret bound is unlikely to be independent of the

strategic budget 𝐵𝑚𝑎𝑥 . Moreover, Proposition 4 in Steinhardt

et al. [35] implies that the dependency on 𝐵𝑚𝑎𝑥 is linear. This

corresponds to our linear dependency of regret in Theorem 4.

5 LOWER BOUNDS FOR STRATEGIC
BUDGET

To fully understand the effects of strategic manipulations, we

investigate the relationship between the strategic budget and

the performance of UCB-based algorithms. Our results provide

the dependency between an arm’s strategic budget and the

number of times it is pulled, which influence the regret of

the algorithm incurred by the arm. Our analysis gains some

insight from Zuo [46], which limits the discussion to the 2-

armed bandit setting and cannot be applied to the general

MAB setting directly.

We first define some notations used in the theorem. With-

out loss of generality, let arm 𝑖∗ be the optimal arm and arm

𝑖, 𝑖 ≠ 𝑖∗ be an arbitrary strategic suboptimal arm. Assume that

arm 𝑖 has no access to the information regarding other arms.

Let 𝐾𝑖,𝑡 and 𝐾𝑖∗,𝑡 denote the number of times arm 𝑖 and arm

𝑖∗ have been pulled up to time 𝑡 , respectively. Denote 𝜇𝑖,𝑡 as

the empirical estimate of the underlying mean 𝜇 without ma-

nipulations, i.e., 𝜇𝑖,𝑡 =

∑𝑡−1
𝑗=1 𝑥𝑖,𝑗

𝐾𝑖,𝑡−1
. Define the suboptimality gap

for each strategic arm 𝑖 to be 𝛿𝑖 = 𝜇𝑖∗ − 𝜇𝑖 . We use a slightly

revised UCB algorithm as the basic algorithm, where the UCB

estimation term for arm 𝑖 is 𝜇𝑖,𝑡 +
√︂

2 log(𝐾2
𝑖,𝑡 /𝜂2)

𝐾𝑖,𝑡
and 𝜂 is a

confidence parameter chosen by the algorithm.

Theorem 5. In stochastic multi-armed bandit problems, for
a strategic suboptimal arm 𝑖 without access to other arms’ infor-
mation, to be pulled for𝜔 (𝑘) in𝑇 steps under the UCB algorithm
where 𝑘 ≥ 𝑂 (log𝑇 ), the minimum strategic budget is 𝜔 (𝑘).

This dependency of 𝑘 can be extended to CMAB and CUCB

straightforwardly when arms within an arm subset collude.

Counter-intuitively, the dependency between the number of

pulls of a strategic arm and its strategic budget is linear and

subsequently, this infers that for a strategic arm to manipulate

the algorithm to suffer an undesired regret of 𝜔 (𝑘), where
𝑘 ≥ 𝑂 (log𝑇 ), the strategic budget must be at least 𝜔 (𝑘).

6 EXPERIMENTS
In this section, we evaluate our SCUCB algorithm empirically

on synthetic data and three real applications, namely online

worker selection in crowdsourcing, online recommendation,

and online influence maximization. We highlight the best per-

formance among all algorithms with bold text.

6.1 Baseline Algorithms
We compare our proposed SCUCB algorithm with both sto-

chastic and adversarial bandits algorithms that achieves opti-

mal asymptotic regret in their settings.

(1) CUCB [11]. CUCB is the naive counterpart of our algo-

rithm. The algorithm calculates an upper confidence

interval for each arm and picks the best arm subset with

the highest upper confidence interval.

(2) TSCB [41]. TSCB is the combinatorial version of the

classical Thompson sampling algorithm. The algorithm

maintains a prior beta distribution estimation for each

arm and updates according to the received reward. At

each time, the algorithm samples from the estimated

distributions and pick actions according to the highest

sample.

(3) Combinatorial variant of EXP3 [4]. The algorithmmain-

tains a weight for each arm and draws actions according

to the normalized weight distribution. Upon receiving

rewards, the algorithm update weight according to the

classical EXP3 update rule.

6.2 Synthetic Experiments
We conduct experiments presented in this section with syn-

thetic data and compare our proposed algorithm with its naive

counterpart. The approximation oracle is designed to succeed

with probability 1. Each bandit arm is modeled to follow a

Bernoulli distribution with randomly populated 𝜇 ∈ [0, 1]
and all arms adapt LSI strategy. The arms in the optimal arm

subset have a strategic budget of 0 since an additional strategic
budget for optimal arms would only boost the performance of

our algorithm. All other arms are equipped with a randomly

allocated budget 𝐵, 0 ≤ 𝐵 ≤ 𝐵𝑚𝑎𝑥 by definition. As is typi-

cal in the bandit literature, for example in Auer et al. [3], we

evaluate both the naive and strategic CUCB algorithms on

their tuned versions, where the UCB exploration parameter is

scaled by a constant factor 𝛾 ∈ [0, 1]. To ensure reproducible

results, each experiment is repeated for 10 random seeds and

the averaged result is presented.

The first set of experiment is conducted with 𝐾 = {10, 20}
arms through a time horizon of 𝑇 = 5000 time steps with

maximum possible budget of 𝐵𝑚𝑎𝑥 = {70, 90, 110, 130}. The
algorithms are asked to select Action size = 2 arms as an

arm subset at each time step. The cumulative regret incurred

by CUCB and SCUCB algorithm is presented in the table 1

where the best performance is highlighted in bold text. Clearly,

SCUCB demonstrated its effectiveness as it achieves signifi-

cantly smaller regrets in various possible maximum strategic

budgets.



Cumulative regret, Action size = 2, K = 10

Dataset Synethetic

Bmax 70 90 110 130

CUCB 171.74 187.51 259.04 256.66

SCUCB 143.85 172.57 208.53 233.57

Cumulative regret, Action size = 2, K = 20

Dataset Synethetic

Bmax 70 90 110 130

CUCB 434.82 492.02 520.97 549.57

SCUCB 301.57 365.94 450.10 505.453

Table 1: Cumulative regret achieved by CUCB and
SCUCB with synthetic data with various action size.

The next two tables reveals the advantage of SCUCB al-

gorithm with various size of action set. The experiments are

conducted with time horizon of𝑇 = 5000 time steps with 𝐾 =

{10, 20} arms and maximum possible budget of 𝐵𝑚𝑎𝑥 = {50}.
The algorithms are asked to select Action size = {2, 4, 6, 8}
arms as an arm subset at each time step. Once again, our

SCUCB outperforms its naive counterpart by achieving much

smaller cumulative regret, the best numerical results across

algorithms are highlighted in bold text.

Cumulative regret, Bmax = 50, K = 10

Dataset Synethetic

Action Size 2 4 6 8

CUCB 140.21 150.88 158.22 123.91

SCUCB 105.58 113.63 103.42 88.72

Cumulative regret, Bmax = 50, K = 20

Dataset Synethetic

Action Size 2 4 6 8

CUCB 302.10 316.09 340.52 328.80

SCUCB 232.23 247.32 268.27 306.77

Table 2: Cumulative regret achieved byUCBand SCUCB
with synthetic data with various 𝐵𝑚𝑎𝑥 .

To compare the two algorithms in detail, we plot the cumu-

lative regret incurred by algorithms against the time steps. It

becomes apparent that the SCUCB algorithm features a cumu-

lative regret versus time steps line that is much smaller than

the one caused by CUCB even under a higher maximum pos-

sible strategic budget. We compare the two algorithm under

settings where the maximize possible budget is 𝐵𝑚𝑎𝑥 = 70, 90
and 𝐵𝑚𝑎𝑥 = 110, 130.

(a) (b)

Figure 2: 2(a) Comparison of CUCB and SCUCB with
𝐵𝑚𝑎𝑥 = 70, 90. 2(b) Comparison of CUCB and SCUCB
with 𝐵𝑚𝑎𝑥 = 110, 130.

6.3 Online Worker Selection in
Crowdsourcing Systems

We simulated an online crowdsourcing system that has a work-

flow resembled by figure 1 and model it as a combinatorial

bandits problem. We performed an extensive empirical analy-

sis of our SCUCB algorithm against CUCB, the combinatorial

version of Thompson sampling, and EXP3. The experiments

were conducted with the Amazon sentiment dataset, where

Amazon item reviews are labeled ’is/is not book’ or ’is/is not

negative [21]. We split the dataset into two, where ’is book’

contains data that only has labels ’is/is not book’ and ’is nega-

tive’ contains data that only has labels ’is/is not negative’. Both

datasets consists of 7803 reviews, 284 workers, and 1011 tasks.

The correctness of workers and tasks can be visualized by the

figures as below. Notice that most of the workers attain an

accuracy of 60 percent and above. This highlights that most

of the workers we are interacting with has the ability to label

most of the tasks correctly.

(a) (b)

Figure 3: 3(a) Visualization of correctness of worker’s
labels. 3(b)Visualization of correctness of task’s labels.

For each task, the data contains responses from 5 workers

and the crowdsourcing platform is asked to select 2, 3, or 4

workers at each time step. To measure the performance of

the algorithms, we made the assumption that the reward is

monotonically correlated to the accuracy of the label compared

to the ground truth label. Thus, we define the reward to be 1,

if the worker’s label is the same as ground truth label and 0



otherwise. To model the strategic behavior of the workers, we

model each worker with a randomly allocated strategic level

𝑠 ∈ [0, 1] such that the worker provides its honest response

with probability 𝑠 .

For the first set of experiments, we choose the maximum

possible strategic budget to be 𝐵𝑚𝑎𝑥 = 500. For actions size of
2, 3, 4. We obtain the following cumulative rewards and cumu-

lative regret results where the best performance is highlighted

in bold text. To ensure reproducible results, each experiment

is repeated 5 times and the averaged result is presented.

To further investigate the effect of the maximum possi-

ble strategic budget on the performance of algorithms, we

fix the size of action size to be 2 and plot the cumulative

reward/cumulative regret incurred by each algorithm again

𝐵𝑚𝑎𝑥 ∈ [100, 700]. Regardless of the 𝐵𝑚𝑎𝑥 value, our pro-

posed SCUCB algorithm consistently outperforms other meth-

ods. For better visualization, we omit the line for combinatorial

Thompson sampling due to its relatively weaker performance.

(a) (b)

Figure 4: 4(a) Cumulative rewards attained by algo-
rithms with various level of 𝐵𝑚𝑎𝑥 . 4(b) Cumulative re-
grets attained by algorithms with various level of 𝐵𝑚𝑎𝑥 .

The results of our crowdsourcing experiments reveal the

robustness of our SCUCB algorithm under strategic manipu-

lations. It also indicates the performance of adversarial and

stochastic bandits algorithms under strategic manipulations.

The combinatorial variant of Thompson sampling is vulnera-

ble under manipulations, which agrees with our expectation

given that the algorithm is a Bayesian algorithm in nature and

is heavily relying on estimating the underlying distribution of

arms. Its estimation can be easily perturbed under strategic

manipulation, and thus leads to undesired performance results.

It is also expected that the SCUCB algorithm far outperforms

its naive counterpart, CUCB algorithm. The combinatorial ver-

sion of EXP3 algorithm is the most competitive algorithm with

our SCUCB. As the EXP3 algorithmwas originally designed for

a pure adversarial setting, the algorithm has some robustness

under strategic manipulations. Shown in the Figure 4(a) and

Figure 4(b), the combinatorial EXP3 algorithm consistently

shows robustness across various levels of maximum possible

strategic budget. However, as our SCUCB algorithm consid-

ers the maximum possible strategic budget and thus more

adaptive, SCUCB far outperforms EXP3CB as 𝐵𝑚𝑎𝑥 increases.

Crowdsourcing (Cumulative Reward), Bmax = 500

Dataset is_book

Action size 2 3 4

CUCB 31672.6 46181.2 68244.6

TSCB 19853.0 34226.2 60621.2

EXP3 31569.6 46570.6 68482.2

SCUCB 32082.6 46623.6 68524.6

Crowdsourcing (Cumulative Regret), Bmax = 500

Dataset is_book

Action size 2 3 4

CUCB 27787.4 42198.8 48125.4

TSCB 39607.0 54153.8 55748.8

EXP3 27890.4 41809.4 47887.8

SCUCB 27377.4 41756.4 47845.4

Crowdsourcing (Cumulative Reward), Bmax = 500

Dataset is_negative

Action size 2 3 4

CUCB 31108.8 44757.6 59424.8

TSCB 17240.6 32010.4 51109.0

EXP3 30879.0 44767.2 58207.8

SCUCB 31759.0 44843.4 59441.4

Crowdsourcing (Cumulative Regret), Bmax = 500

Dataset is_negative

Action size 2 3 4

CUCB 28411.2 43566.2 56465.2

TSCB 42279.4 56279.6 64781.0

EXP3 28641.0 43523.4 57682.2

SCUCB 27761.0 43446.6 56448.6

Table 3: Cumulative rewards and cumulative regret at-
tained by SCUCB and baseline algorithms with various
action sizes on isbook dataset and isnegative dataset.

6.4 Online Recommendation System
The online recommendation is a classic example of combi-

natorial bandits in applications. We evaluated algorithms in

the latest MovieLens dataset which contains 9742 movies and

100837 ratings of the movies with each rating being 1− 5 [18].

We compare the algorithms based on the total values of ratings

received, i.e. recommending a movie and receiving a rating of

5 is more desired than recommending a movie and receiving a

rating of 1.

As the dataset may consist of unbalanced data for each

movie, we adapted collaborative filtering and 𝑘-means clus-

tering into our evaluation system. We used the collaborative

filtered for training and testing and instead of recommend-

ing movies, we clustered the movies by 𝑘-means clustering

and asked the bandits algorithm to choose one cluster at each

time. The movie with the highest rating in the chosen cluster



is recommended. The workflow of the experiment setup is

summarized in the above diagram.

We performed the evaluation with various number of clus-

ters (10, 20 or 30) and 𝐵𝑚𝑎𝑥 = 30, 50, 70 through a time hori-

zon of𝑇 = 500. The results presented below are averages over

5 runs to ensure reproducibility. The best performance across

algorithms is highlighted in bold text. From the tables below,

we conclude the effectiveness of SCUCB algorithm.

Recsys (Cumulative Reward), T=500, 10 clusters

Dataset Movielens

Bmax 30 50 70

UCB 2297.60 2494.36 2631.02

TS 2160.14 2314.76 2468.26

EXP3 2181.11 2449.28 2430.96

SUCB 2305.75 2314.76 2636.07

Recsys (Cumulative Reward), T=500, 20 clusters

Dataset Movielens

Bmax 30 50 70

UCB 2469.93 2336.92 2159.25

TS 2260.20 1850.55 1905.42

EXP3 2380.74 2317.82 2025.39

SUCB 2474.69 2341.19 2177.70

Recsys (Cumulative Reward), T=500, 30 clusters

Dataset Movielens

Bmax 30 50 70

UCB 2443.57 2393.88 2472.31

TS 2132.16 2248.56 1855.14

EXP3 2368.42 2265.32 2339.49

SUCB 2436.43 2397.72 2476.52

Table 4: Cumulative rewards attained by algorithms
with different number of clusters 10, 20, 30 and differ-
ent level of {𝐵𝑚𝑎𝑥 = 30, 50, 70} across 500 time steps.

Figure 5: Experiment set up of online recommendation.

6.5 Online Influence Maximization
We implemented the online influence maximization with an

offline influence maximization algorithm TIM as our oracle

[37]. TIM is one of the offline influence maximization algo-

rithms that achieve asymptotic optimality. We perform the

experiments on two datasets. One is a simulation dataset with

16 nodes and 44 edges, the other is a 100 nodes subset from

Digg dataset, where each node represents a user from Digg

website [33]. We simulate the connectivity of edges at each

time step by randomly assigning each edge a connectivity

probability at the start of the experiment.

Figure 6: Visualization of synthetic graph for evalua-
tion.

Figure 7: Mean rewards attained by algorithms.

Figure 6 visualizes the synthetic graph we created for eval-

uation. We then tested the algorithms over𝑇 = 800 time steps

with action size of 2 and maximum possible strategic budget

of 𝐵𝑚𝑎𝑥 = 300. Figure 7 shows the effectiveness of algorithms

by evaluating based on the averaged nodes influenced. To

ensure reproducible results, we calculate the mean of influ-

ence spread over 100 trials. For better visualization, we kept a

running mean of over 50 time steps to smooth the lines.

We then investigate the effect of action size and the results

are summarized in the following tables 5.



OIM (Averaged Final Reward), Bmax = 200

Dataset Synthetic, 16 nodes, 44 edges

Action size 2 4 6 8

CUCB 5.46 6.54 10.4 12.5

TSCB 6.7 8.50 10.44 12.7

EXP3CB 5.86 8.14 10.34 12.46

SCUCB 7.44 9.32 11.16 13.04

OIM (Averaged Final Reward), Bmax = 200

Dataset digg, 100 nodes

Action size 10 15 20

CUCB 15.64 20.64 25.32

TSCB 16.30 21.62 26.08

EXP3 12.16 17.76 21.72

SCUCB 16.56 22.16 26.14

Table 5: Averaged final rewards attained by algorithms
with synthetic andDigg datasetwith action size of 2, 800
time steps and 𝐵𝑚𝑎𝑥 = 200.

7 CONCLUSION
We investigate the problem of combinatorial MAB under strate-

gic manipulations of rewards. We propose a variant of the UCB

algorithm, SCUCB, which attains a regret at most𝑂 (𝑚 log𝑇 +
𝑚𝐵𝑚𝑎𝑥 ). Compared to previous studies on the bandit problems

under strategic manipulations, we relax on the assumption

that the algorithm has access to the cumulative strategic bud-

get spent by each arm at each time step. For the robustness of

bandit algorithms, we present lower bounds on the strategic

budget for a malicious arm to incur a 𝜔 (log𝑇 ) regret of the
bandit algorithm.

We provide extensive empirical results on both synthetic

and real datasets with a range of applications to verify the

effectiveness of the proposed algorithm. Our algorithm con-

sistently outperforms baseline algorithms that were designed

for stochastic and adversarial settings.
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A REGRET ANALYSIS OF STRATEGIC UCB
Lemma 3 (Re-statement). Let Λ𝑖,𝑡 =

√︃
3 log 𝑡
2𝐾𝑖,𝑡−1

+ 𝜌𝑖,𝑡−1
𝐾𝑖,𝑡−1

, where 𝜌𝑖,𝑡−1 is the total strategic budget spent by arm 𝑖 up to time 𝑡 − 1

and 𝐾𝑖,𝑡−1 be the total number of pulls of arm 𝑖 up to time 𝑡 − 1. Define the event 𝐸𝑡 = {| 𝜇̃𝑖,𝑡−1 − 𝜇𝑖 | ≤ Λ𝑖,𝑡 ,∀𝑖 ∈ [𝑚]}, where 𝜇𝑖 is
the true mean of arm 𝑖’s underlying distribution. Then, P(¬𝐸𝑡 ) ≤ 2𝑚 · 𝑡−2.

Proof. Denote 𝜇𝑖,𝑡−1 =

∑𝑡−1
𝑗=1 𝑥𝑖,𝑗

𝐾𝑖,𝑡−1
as the estimation of the expected reward without the manipulated variable 𝑧𝑖,𝑡 . By the

definition of 𝜇𝑖,𝑡 and 𝜇̃𝑖,𝑡 ,

P

(
|𝜇̃𝑖,𝑡−1 − 𝜇𝑖 | >

√︄
3 log 𝑡

2𝐾𝑖,𝑡−1
+
𝜌𝑖,𝑡−1
𝐾𝑖,𝑡−1

)
= P

(����𝜇𝑖,𝑡−1 + 𝜌𝑖,𝑡−1
𝐾𝑖,𝑡−1

− 𝜇𝑖
���� > √︄

3 log 𝑡

2𝐾𝑖,𝑡−1
+
𝜌𝑖,𝑡−1
𝐾𝑖,𝑡−1

)
= P

(
𝜇𝑖,𝑡−1 − 𝜇𝑖 >

√︄
3 log 𝑡

2𝐾𝑖,𝑡−1

)
+ P

(
𝜇𝑖,𝑡−1 − 𝜇𝑖 < −

√︄
3 log 𝑡

2𝐾𝑖,𝑡−1
− 2

𝜌𝑖,𝑡−1
𝐾𝑖,𝑡−1

)
≤ P

(
𝜇𝑖,𝑡−1 − 𝜇𝑖 >

√︄
3 log 𝑡

2𝐾𝑖,𝑡−1

)
+ P

(
𝜇𝑖,𝑡−1 − 𝜇𝑖 < −

√︄
3 log 𝑡

2𝐾𝑖,𝑡−1

)
=

𝑡−1∑︁
𝑠=1

P

(
|𝜇𝑖,𝑡−1 − 𝜇𝑖 | >

√︂
3 log 𝑡

2𝑠
,𝐾𝑖,𝑡−1 = 𝑠

)
≤
𝑡−1∑︁
𝑠=1

P

(
|𝜇𝑖,𝑡−1 − 𝜇𝑖 | >

√︂
3 log 𝑡

2𝑠

)
≤ 2𝑡 · exp (−3 log 𝑡) = 2

𝑡2
,

where the last inequality follows the Chernoff-Hoeffding bound. By the union bound,

P(¬𝐸𝑡 ) = P
(
{|𝜇̃𝑖,𝑡−1 − 𝜇𝑖 | > Λ𝑖,𝑡 ,∀𝑖 ∈ [𝑚]}

)
≤ 2𝑚 · 𝑡−2 . □

Theorem 4 (Re-statement). The regret of the strategic CUCB algorithm with m strategic arms in time horizon 𝑇 using an (𝛼, 𝛽)-
approximation oracle is at most

𝑚 · Δ𝑚𝑎𝑥

(
8𝐵𝑚𝑎𝑥 𝑓

−1 (Δ𝑚𝑖𝑛) + 6 log𝑇(
𝑓 −1 (Δ𝑚𝑖𝑛)

)2 + 𝜋
2

3
+ 1

)
,

where 𝑓 −1 (·) is the inverse bounded smoothness function.

Proof. We start by introducing a few notations. Let 𝐹𝑡 to be the event where the (𝛼, 𝛽)-approximation oracle fails to produce

an 𝛼-approximation answer with respect to the input 𝝁 = (𝜇1,𝑡 , 𝜇2,𝑡 , ....., 𝜇𝑚,𝑡 ) at time 𝑡 . By definition of a (𝛼, 𝛽)-approximation

oracle, we have P(𝐹𝑡 ) ≤ 1−𝛽 . Observe that at an arbitrary time 𝑡 , a suboptimal arm subset may be selected due to two reasons, i) the

(𝛼, 𝛽)-approximation oracle fails to provide an 𝛼-approximate arm subset with respect to the input vector 𝝁 = (𝜇1,𝑡 , 𝜇2,𝑡 , ....., 𝜇𝑚,𝑡 )
and ii) the estimated mean vector 𝝁 = (𝜇1,𝑡 , 𝜇2,𝑡 , ......, 𝜇𝑚,𝑡 ) deviates from true values by a significant amount.

To account for

∑𝑇
𝑡=1 I(𝑆𝑡 ∈ 𝑆𝐵),where I(𝑆𝑡 ∈ 𝑆𝐵) is 1 when algorithm choose a suboptimal arm subset, 𝑆𝑡 ∈ 𝑆𝐵 , at time 𝑡 , we

introduce a counter 𝑁𝑖 for each arm 𝑖 ∈ [𝑚] after the𝑚-round initialization and let 𝑁𝑖,𝑡 be the value of 𝑁𝑖 at time 𝑡 . We initialize

𝑁𝑖,𝑚 = 1. By definition,

∑
𝑖∈[𝑚] 𝑁𝑖,𝑚 =𝑚. For 𝑡 > 𝑚, the counter 𝑁𝑖,𝑡 is updated as follows.

• If 𝑆𝑡 ∈ 𝑆𝐵 , then 𝑁𝑖′,𝑡 = 𝑁𝑖′,𝑡−1 + 1 where 𝑖 ′ = argmin𝑖∈𝑆𝑡 𝑁𝑖,𝑡−1. In the case that 𝑖 ′ is not unique, we break ties arbitrarily.

• If 𝑆𝑡 ∉ 𝑆𝐵 , no counters will be updated then.

As such, the total number of pulls of suboptimal arm subsets is less than or equal to

∑𝑚
𝑖=1 𝑁𝑖,𝑇 .

Define𝜓𝑡 =
8𝐵𝑚𝑎𝑥 𝑓

−1 (Δ𝑚𝑖𝑛)+6 log 𝑡
(𝑓 −1 (Δ𝑚𝑖𝑛))2

> 𝑐 , where 𝑐 is the larger solution of the following equation,(
𝑓 −1 (Δ𝑚𝑖𝑛)

)2
4

𝑐2 −
(
2𝐵𝑚𝑎𝑥 𝑓

−1 (Δ𝑚𝑖𝑛) +
3 log 𝑡

2

)
𝑐 + 4𝐵2𝑚𝑎𝑥 = 0 . (1)

By solving Equation (1), we have

𝑐 =

2
(
2𝐵𝑚𝑎𝑥 𝑓

−1 (Δ𝑚𝑖𝑛) + 3 log 𝑡
2

)
(
𝑓 −1 (Δ𝑚𝑖𝑛)

)2 +
2

√︂(
2𝐵𝑚𝑎𝑥 𝑓 −1 (Δ𝑚𝑖𝑛) + 3 log 𝑡

2

)2
− 4(𝑓 −1 (Δ𝑚𝑖𝑛))𝐵𝑚𝑎𝑥(

𝑓 −1 (Δ𝑚𝑖𝑛)
)2 . (2)



We then decompose the total number

∑𝑚
𝑖=1 𝑁𝑖,𝑇 of pulls of suboptimal arm subsets as

𝑚∑︁
𝑖=1

𝑁𝑖,𝑇 =𝑚 +
𝑇∑︁

𝑡=𝑚+1
I{𝑆𝑡 ∈ 𝑆𝐵}

=𝑚 +
𝑇∑︁

𝑡=𝑚+1

𝑚∑︁
𝑖∈[𝑚]

I{𝑆𝑡 ∈ 𝑆𝐵 ,𝑁𝑖,𝑡 > 𝑁𝑖,𝑡−1,𝑁𝑖,𝑡−1 ≤ 𝜓𝑡 } +
𝑇∑︁

𝑡=𝑚+1

𝑚∑︁
𝑖∈[𝑚]

I{𝑆𝑡 ∈ 𝑆𝐵 ,𝑁𝑖,𝑡 > 𝑁𝑖,𝑡−1,𝑁𝑖,𝑡−1 > 𝜓𝑡 }

≤ 𝑚 +𝑚𝜓𝑇 +
𝑇∑︁

𝑡=𝑚+1

𝑚∑︁
𝑖∈[𝑚]

I{𝑆𝑡 ∈ 𝑆𝐵 ,𝑁𝑖,𝑡 > 𝑁𝑖,𝑡−1,𝑁𝑖,𝑡−1 > 𝜓𝑡 }

=𝑚 +𝑚𝜓𝑇 +
𝑇∑︁

𝑡=𝑚+1
I{𝑆𝑡 ∈ 𝑆𝐵 ,∀𝑖 ∈ 𝑆𝑡 ,𝑁𝑖,𝑡−1 > 𝜓𝑡 } . (3)

The first inequality follows as

∑𝑇
𝑡=𝑚+1 I{𝑆𝑡 ∈ 𝑆𝐵 ,∀𝑖 ∈ 𝑆𝑡 ,𝑁𝑖,𝑡−1 ≤ 𝜓𝑡 } can be trivially upper bounded by 𝜓𝑡 and the second

equality holds by our rule of updating the counters.

The third term of Equation (3) can be further decomposed according to whether the oracle fails,

𝑇∑︁
𝑡=𝑚+1

I{𝑆𝑡 ∈ 𝑆𝐵 ,𝑁𝑖,𝑡−1 > 𝜓𝑡 ,∀𝑖 ∈ 𝑆𝑡 }

≤
𝑇∑︁

𝑡=𝑚+1
(I{𝐹𝑡 } + I{¬𝐹𝑡 , 𝑆𝑡 ∈ 𝑆𝐵 ,𝐾𝑖,𝑡−1 > 𝜓𝑡 ,∀𝑖 ∈ 𝑆𝑡 }) (4)

= (𝑇 −𝑚) (1 − 𝛽) +
𝑇∑︁

𝑡=𝑚+1
I{¬𝐹𝑡 , 𝑆𝑡 ∈ 𝑆𝐵 ,𝐾𝑖,𝑡−1 > 𝜓𝑡 ,∀𝑖 ∈ 𝑆𝑡 } .

Let Λ𝑖,𝑡 =

√︃
3 log 𝑡
2𝐾𝑖,𝑡−1

+ 𝜌𝑖,𝑡−1
𝐾𝑖,𝑡−1

where 𝜌𝑖,𝑡−1 is the total strategic budget spent by arm 𝑖 up to time 𝑡 − 1. Define event 𝐸𝑡 =

{| 𝜇̃𝑖,𝑡−1 − 𝜇𝑖 | ≤ Λ𝑖,𝑡 ,∀𝑖 ∈ [𝑚]}, where 𝜇𝑖 is the true mean of arm 𝑖’s underlying distribution without manipulation. We continue

the proof under P({𝐸𝑡 ,¬𝐹𝑡 , 𝑆𝑡 ∈ 𝑆𝐵 ,𝐾𝑖,𝑡−1 > 𝜓𝑡 ,∀𝑖 ∈ 𝑆𝑡 }) = 0 and prove it afterwards.

Since P
(
{𝐸𝑡 ,¬𝐹𝑡 , 𝑆𝑡 ∈ 𝑆𝐵 ,𝐾𝑖,𝑡−1 > 𝜓𝑡 ,∀𝑖 ∈ 𝑆𝑡 }

)
= 0, by inclusion-exclusion principle, P({¬𝐹𝑡 , 𝑆𝑡 ∈ 𝑆𝐵 ,𝐾𝑖,𝑡−1 > 𝜓𝑡 ,∀𝑖 ∈

𝑆𝑡 }) ≤ P(¬𝐸𝑡 ) . Denote 𝜇𝑖,𝑡−1 =

∑𝑡−1
𝑗=1 𝑥𝑖,𝑗

𝐾𝑖,𝑡−1
as the estimation of the expected reward without the manipulated variable 𝑧𝑖,𝑡 . By the

definition of 𝜇𝑖,𝑡 and 𝜇̃𝑖,𝑡−1,

P

(
|𝜇̃𝑖,𝑡−1 − 𝜇𝑖 | >

√︄
3 log 𝑡

2𝐾𝑖,𝑡−1
+
𝜌𝑖,𝑡−1
𝐾𝑖,𝑡−1

+ 𝐵𝑚𝑎𝑥

𝐾𝑖,𝑡−1

)
= P

(����𝜇𝑖,𝑡−1 + 𝜌𝑖,𝑡−1
𝐾𝑖,𝑡−1

− 𝜇𝑖
���� > √︄

3 log 𝑡

2𝐾𝑖,𝑡−1
+
𝜌𝑖,𝑡−1
𝐾𝑖,𝑡−1

+ 𝐵𝑚𝑎𝑥

𝐾𝑖,𝑡−1

)
≤ P

(����𝜇𝑖,𝑡−1 + 𝜌𝑖,𝑡−1
𝐾𝑖,𝑡−1

− 𝜇𝑖
���� > √︄

3 log 𝑡

2𝐾𝑖,𝑡−1
+
𝜌𝑖,𝑡−1
𝐾𝑖,𝑡−1

)
≤ 2𝑡−2 , (5)

where the last inequality holds due to Lemma 3.

By the union bound,

P(¬𝐸𝑡 ) = P({|𝜇̃𝑖,𝑡−1 − 𝜇𝑖 | > Λ𝑖,𝑡 ,∀𝑖 ∈ [𝑚]} ) ≤ 2𝑚 · 𝑡−2 .

Hence,

P({¬𝐹𝑡 , 𝑆𝑡 ∈ 𝑆𝐵 ,∀𝑖 ∈ 𝑆𝑡 ,𝐾𝑖,𝑡−1 > 𝜓𝑡 ,∀𝑖 ∈ 𝑆𝑡 }) ≤ P(¬𝐸𝑡 ) ≤ 2𝑚 · 𝑡−2 .

We now show that P({𝐸𝑡 ,¬𝐹𝑡 , 𝑆𝑡 ∈ 𝑆𝐵 ,𝐾𝑖,𝑡−1 > 𝜓𝑡 ,∀𝑖 ∈ 𝑆𝑡 }) = 0. Let Λ =

√︃
3 log 𝑡
2𝜓𝑡

+ 2𝐵𝑚𝑎𝑥

𝜓𝑡
, which is not a random variable,

and 𝐵𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖∈[𝑚]𝐵𝑖 , where 𝐵𝑖 is the strategic budget for arm 𝑖 . For variable Λ𝑖,𝑡 , let Λ
∗
𝑖,𝑡 = max{Λ𝑖,𝑡 }. Since 𝐾𝑖,𝑡−1 > 𝜓𝑡

and 𝐵𝑚𝑎𝑥 ≥ 𝐵𝑖 ≥ 𝜌𝑖 , we have Λ > Λ∗
𝑖,𝑡 . According to line 7 of Algorithm 1, we have 𝜇𝑖,𝑡 = 𝜇̃𝑖,𝑡−1 +

√︃
3 log 𝑡
2𝐾𝑖,𝑡−1

+ 𝐵𝑚𝑎𝑥

𝐾𝑖,𝑡−1
and

𝜇𝑖,𝑡 = 𝜇𝑖,𝑡−1 +
𝜌𝑖,𝑡−1
𝐾𝑖,𝑡−1

+
√︃

3 log 𝑡
2𝐾𝑖,𝑡−1

+ 𝐵𝑚𝑎𝑥

𝐾𝑖,𝑡−1
. Thus, |𝜇𝑖,𝑡−1 − 𝜇𝑖 | ≤ Λ𝑖,𝑡 implies that 0 < 𝜇𝑖,𝑡−1 − 𝜇𝑖 ≤ 2Λ𝑖,𝑡 ≤ 2Λ∗

𝑖,𝑡 ≤ 2Λ, for 𝑖 ∈ 𝑆𝑡 .



Recall 𝑆∗ = argmax𝑆 ∈S 𝑟𝝁 (𝑆) and 𝑂𝑃𝑇 𝝁 = max𝑆 ∈S 𝑟𝝁 (𝑆). Suppose {𝐸𝑡 ,¬𝐹𝑡 , 𝑆𝑡 ∈ 𝑆𝐵 ,∀𝑖 ∈ 𝑆𝑡 ,𝐾𝑖,𝑡−1 > 𝜓𝑡 } happens at time 𝑡 ,

the following holds

𝑟𝝁 (𝑆𝑡 ) + 𝑓 (2Λ) ≥ 𝑟𝝁 (𝑆𝑡 ) + 𝑓 (2Λ∗
𝑖,𝑡 ) ≥ 𝑟𝝁 (𝑆𝑡 ) ≥ 𝛼 ·𝑂𝑃𝑇 𝝁 ≥ 𝛼 · 𝑟𝝁 (𝑆∗𝝁 ) ≥ 𝛼 · 𝑟𝝁 (𝑆∗𝝁 ) = 𝛼 ·𝑂𝑃𝑇 𝝁 .

The first inequality is due to the strict monotonicity of 𝑓 (·) and Λ > Λ∗
𝑖,𝑡 . The second inequality is due to the bounded smoothness

property and |𝜇𝑖,𝑡−1 − 𝜇𝑖 | ≤ 2Λ𝑖,𝑡 . The third inequality is due to the fact that ¬𝐹𝑡 implies 𝑆𝑡 ≥ 𝛼 · 𝑜𝑝𝑡𝝁 . The forth inequality is by

the definition of 𝑜𝑝𝑡𝝁 . The last inequality is is due to the monotonicity of 𝑟𝝁 (𝑆) and 0 < 𝜇𝑖,𝑡−1 − 𝜇𝑖 .

Let 𝜅 =

√︃
3 log 𝑡
2𝑐 + 2𝐵𝑚𝑎𝑥

𝑐 where 𝑐 takes the value defined in Equation (1). Given𝜓𝑡 > 𝑐 , we have Λ =

√︃
3 log 𝑡
2𝜓𝑡

+ 2𝐵𝑚𝑎𝑥

𝜓𝑡
< 𝜅 . By

Equation (2), we have 𝑓 (2Λ) < 𝑓 (2𝜅) = Δ𝑚𝑖𝑛 and Δ𝑚𝑖𝑛 > 𝛼 · 𝑜𝑝𝑡𝝁 − 𝑟𝝁 (𝑆𝑡 ), which contradicts the definition of Δ𝑚𝑖𝑛 and the fact

that 𝑆𝑡 ∈ 𝑆𝐵 . Therefore,
P(𝐸𝑡 ,¬𝐹𝑡 , 𝑆𝑡 ∈ 𝑆𝐵 ,∀𝑖 ∈ 𝑆𝑡 ,𝐾𝑖,𝑡−1 > 𝜓𝑡 ) = 0 .

Based on the above analysis, we can upper bound the total number of suboptimal pulls as

E

[
𝑚∑︁
𝑖=1

𝑁𝑖,𝑇

]
≤ 𝑚(1 +𝜓𝑇 ) + (𝑇 −𝑚) (1 − 𝛽) +

𝑇∑︁
𝑡=𝑚+1

2𝑚

𝑡2

=𝑚

(
1 + 8𝐵𝑚𝑎𝑥 𝑓

−1 (Δ𝑚𝑖𝑛) + 6 log𝑇(
𝑓 −1 (Δ𝑚𝑖𝑛)

)2 )
+ (𝑇 −𝑚) (1 − 𝛽) +

𝑇∑︁
𝑡=𝑚+1

2𝑚

𝑡2
. (6)

Since the cumulative regret relate closely to the total number of suboptimal pulls E[∑𝑚𝑖=1 𝑁𝑖,𝑇 ], the upper bound of cumulative

regret is thus

𝑅𝑒𝑔𝑟𝑒𝑡𝝁,𝛼,𝛽 (𝑇 ) ≤ 𝑇 · 𝛼𝛽OPT𝝁 −
(
𝑇 · 𝛼OPT𝝁 − E

[
𝑚∑︁
𝑖=1

𝑁𝑖,𝑇

]
Δ𝑚𝑎𝑥

)
= (𝛽 − 1)𝑇 · 𝛼OPT𝝁 + Δ𝑚𝑎𝑥

(
𝑚

(
1 + 8𝐵𝑚𝑎𝑥 𝑓

−1 (Δ𝑚𝑖𝑛) + 6 log𝑇(
𝑓 −1 (Δ𝑚𝑖𝑛)

)2 )
+ (𝑇 −𝑚) (1 − 𝛽) +

𝑇∑︁
𝑡=𝑚+1

2𝑚

𝑡2

)
≤ ((𝑇 −𝑚) · Δ𝑚𝑎𝑥 −𝑇 · 𝛼OPT𝝁 ) (1 − 𝛽) +𝑚 · Δ𝑚𝑎𝑥

(
1 + 8𝐵𝑚𝑎𝑥 𝑓

−1 (Δ𝑚𝑖𝑛) + 6 log𝑇(
𝑓 −1 (Δ𝑚𝑖𝑛)

)2 + 𝜋
2

3

)
.

Each time the algorithm pull a suboptimal arm subset 𝑆𝑡 ∈ 𝑆𝐵 at time 𝑡 , the algorithm incur an additional regret of at most Δ𝑚𝑎𝑥 ,
which is less than or equal to 𝛼 · 𝑜𝑝𝑡𝝁 . Thus,

(𝑇 −𝑚)Δ𝑚𝑎𝑥 −𝑇𝛼 · OPT𝝁
≤ (𝑇 −𝑚)𝛼 · OPT𝝁 −𝑇𝛼 · OPT𝝁
= −𝑚𝛼 · OPT𝝁 < 0 .

As a result, the regret of the strategic CUCB algorithm under strategic manipulations of reward is at most

𝑅𝑒𝑔𝑟𝑒𝑡𝝁,𝛼,𝛽 (𝑇 ) ≤ 𝑚 · Δ𝑚𝑎𝑥

(
8𝐵𝑚𝑎𝑥 𝑓

−1 (Δ𝑚𝑖𝑛) + 6 log𝑇(
𝑓 −1 (Δ𝑚𝑖𝑛)

)2 + 𝜋
2

3
+ 1

)
.

□

B LOWER BOUND ON THE STRATEGIC BUDGET
Theorem 5. In stochastic multi-armed bandit problems, for a strategic suboptimal arm 𝑖 , under time horizon 𝑇 and without access to
other arms’ information, the minimum strategic budget needed for it to be pulled 𝜔 (log𝑇 ) is 𝜔 (log𝑇 ). The regret incurred for any
bandits learning algorithm is thus 𝜔 (log𝑇 ).

Proof. Let time 𝑡 ∈ [1,𝑇 ] be the time step arm 𝑖 is last pulled under UCB algorithm and 𝜂 is a parameter chosen by the

algorithm. The following inequality must stands at time 𝑡 ,

𝜇𝑖,𝑡 +

√√
2 log(𝐾2

𝑖,𝑡/𝜂2)
𝐾𝑖,𝑡

+ 𝜌𝑖

𝐾𝑖,𝑡
≥ 𝜇𝑖∗,𝑡 +

√√
2 log(𝐾2

𝑖∗,𝑡/𝜂2)
𝐾𝑖∗,𝑡

.

By Chernoff-Hoeffding bound and the union bound,

P
©­«𝜇𝑖,𝑡 − 𝜇𝑖 ≥

√√
2 log(𝐾2

𝑖,𝑡/𝜂2)
𝐾𝑖,𝑡

ª®®¬



≤
𝑡∑︁
𝑠=1

P

(
𝜇𝑖,𝑡 − 𝜇𝑖 ≥

√︂
2 log(𝑠2/𝜂2)

𝑠
,𝐾𝑖,𝑡 = 𝑠

)
≤

𝑡∑︁
𝑠=1

P

(
𝜇𝑖,𝑡 − 𝜇𝑖 ≥

√︂
2 log(𝑠2/𝜂2)

𝑠

)
≤

𝑡∑︁
𝑠=1

𝜂2

𝑠2
= 𝜂2

𝑡∑︁
𝑠=1

1

𝑠2
≤ 𝜋2

6
𝜂2 .

Thus 𝜇𝑖,𝑡 − 𝜇𝑖 ≤
√︂

2 log(𝐾2
𝑖,𝑡 /𝜂2)

𝐾𝑖,𝑡
and similarly 𝜇𝑖∗,𝑡 − 𝜇𝑖∗ ≤

√︂
2 log(𝐾2

𝑖∗,𝑡 /𝜂
2)

𝐾𝑖∗,𝑡
, each with probability of at least 1 − 𝜋2

6 𝜂
2
. Hence

with probability 1 − 2𝜋
2

6 𝜂
2
, we have

𝜇𝑖 +

√√
2 log(𝐾2

𝑖,𝑡/𝜂2)
𝐾𝑖,𝑡

+ 𝜌𝑖

𝐾𝑖,𝑡
≥ 𝜇𝑖∗ .

When arm 𝑖 is pulled, arm 𝑖 wants to ensure the following holds√√
2 log(𝐾2

𝑖,𝑡/𝜂2)
𝐾𝑖,𝑡

+ 𝜌𝑖

𝐾𝑖,𝑡
≥ 𝛿𝑖 .

where 𝛿𝑖 = 𝜇𝑖∗ − 𝜇𝑖 . Then,

𝐵𝑖 ≥ 𝜌𝑖 ≥
©­«𝛿𝑖 −

√√
2 log(𝐾2

𝑖,𝑡/𝜂2)
𝐾𝑖,𝑡

ª®®¬ · 𝐾𝑖,𝑡 . □
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