
Learning from Visual Observation via Offline
Pretrained State-to-Go Transformer

Bohan Zhou12 Ke Li2 Jiechuan Jiang12 Zongqing Lu12†

1PKU 2BAAI

Abstract

Learning from visual observation (LfVO), aiming at recovering policies from
only visual observation data, is promising yet a challenging problem. Existing
LfVO approaches either only adopt inefficient online learning schemes or require
additional task-specific information like goal states, making them not suited for
open-ended tasks. To address these issues, we propose a two-stage framework for
learning from visual observation. In the first stage, we introduce and pretrain State-
to-Go (STG) Transformer offline to predict and differentiate latent transitions of
demonstrations. Subsequently, in the second stage, the STG Transformer provides
intrinsic rewards for downstream reinforcement learning tasks where an agent
learns merely from intrinsic rewards. Empirical results on Atari and Minecraft show
that our proposed method outperforms baselines and in some tasks even achieves
performance comparable to the policy learned from environmental rewards. These
results shed light on the potential of utilizing video-only data to solve difficult
visual reinforcement learning tasks rather than relying on complete offline datasets
containing states, actions, and rewards. The project’s website and code can be
found at https://sites.google.com/view/stgtransformer.

STG TransformerEncoder

Temporally-aligned
Representation Learning

Policy

Encoder

Intrinsic

Observe

TransferPPO

Stage 1:Offline Pretraining Stage 2:Online RL

Input

Input

Transition
Discrimination

Figure 1: A two-stage framework for learning from visual observation. The first stage involves three
concurrently pretrained components. A feature encoder is trained in a self-supervised manner to
provide easily predicted and temporally aligned representations for stacked-image states. State-to-Go
(STG) Transformer is trained in an adversarial way to accurately predict transitions in latent space.
A discriminator is updated simultaneously to distinguish state transitions of prediction from expert
demonstrations, which provides high-quality intrinsic rewards for downstream online reinforcement
learning in the next stage.

†Correspondence to Zongqing Lu <zongqing.lu@pku.edu.cn>

Preprint. Under review.

ar
X

iv
:2

30
6.

12
86

0v
1

 [
cs

.L
G

]
 2

2
Ju

n
20

23

https://sites.google.com/view/stgtransformer

1 Introduction

Reinforcement learning (RL) from scratch imposes significant challenges due to sample inefficiency
and hard exploration in environments with sparse rewards. This has led to increased interest in
imitation learning (IL). IL agents learn policies by imitating expert demonstrations in a data-driven
manner rather than through trial-and-error processes. It has been proven effective in various domains,
including games [1] and robotics [2].

However, acquiring demonstrated actions can be expensive or impractical, e.g., from videos that
are largely available though, leading to the development of learning from observation (LfO) [3, 4,
5, 6, 7, 8, 9]. This line of research utilizes observation-only data about agent behaviors and state
transitions for policy learning. Humans naturally learn from visual observation without requiring
explicit action guidance, such as beginners in video games improving their skills by watching skilled
players’ recordings. However, LfO agents face challenges in extracting useful features from raw
visual observations and using them to train a policy due to the lack of explicit action information.
Thus, further study of learning from visual observation (LfVO) has the potential to grant agents
human-like learning capabilities.

In this paper, we investigate a reinforcement learning setting in which agents learn from visual
observation to play challenging video games, such as Atari and Minecraft. Many existing LfO
approaches [4, 5, 6, 7, 8] only apply to vector-observation environments, such as MuJoCo, while
others explicitly consider or can be applied to high-dimensional visual observations. Among them,
representation-learning methods [9, 10, 11] learn effective visual representations and recover an
intrinsic reward function from them. However, most of these methods only excel in continuous
control tasks, exhibiting certain limitations when applied to video games as we show in experiments
later. Adversarial methods [3, 12, 13] learn an expert-agent observation discriminator online to
directly indicate visual differences. However, noises or local changes in visual observations may
easily cause misclassification [14]. In [12, 13], additional proprioceptive features (e.g., joint angles)
are used to train a discriminator, which are unavailable in environments that only provide visual
observations. Moreover, as these methods require online training, sample efficiency is much lower
compared to offline learning. Goal-oriented methods, like [15], evaluate the proximity of each visual
observation to expert demonstrations or predefined goals. However, defining explicit goals is often
impractical in open-ended tasks [16]. Furthermore, the continuity of observation sequences in video
games cannot be guaranteed due to respawn settings or unanticipated events.

To address these limitations and hence enable RL agents to effectively learn from visual observation,
we propose a general two-stage framework that leverages visual observations of expert demonstrations
to guide online RL. In the first stage, unlike existing online adversarial methods, we introduce and
pretrain State-to-Go (STG) Transformer, a variant of Decision Transformer (DT) [17], for offline
predicting transitions in latent space. In the meanwhile, temporally-aligned and predictable visual
representations are learned. Together, a discriminator is trained to differentiate expert transitions,
generating intrinsic rewards to guide downstream online RL training in the second stage. That said,
in the second stage, agents learn merely from generated intrinsic rewards without environmental
reward signals. Our empirical evaluation reveals significant improvements in both sample efficiency
and overall performance across various video games, demonstrating the effectiveness of the proposed
framework.

Our main contributions are as follows:

• We propose a general two-stage framework, providing a novel way to enable agents to
effectively learn from visual observation. We introduce State-to-Go Transformer, which
is pretrained offline merely on visual observations and then employed to guide online
reinforcement learning without environmental rewards.

• We simultaneously learn a discriminator and a temporal distance regressor for temporally-
aligned embeddings while predicting latent transitions. We demonstrate that the jointly
learned representations lead to enhanced performance in downstream RL tasks.

• Through extensive experiments in Atari and Minecraft, we demonstrate that the proposed
method substantially outperforms baselines and even achieves performance comparable to
the policies learned from environmental rewards in some games, underscoring the potential
of leveraging offline video-only data for reinforcement learning.

2

2 Related Work

Learning from Observation (LfO) is a more challenging setting than imitation learning (IL),
in which an agent learns from a set of demonstrated observations to complete a task without the
assistance of action or reward guidance. Many existing works [5, 18, 19, 20] attempt to train
an inverse dynamic model to label observation-only demonstrations with expert actions, enabling
behavior cloning. However, these methods often suffer from compounding error [21]. On the other
hand, [4] learns a latent policy and a latent forward model, but the latent actions can sometimes
be ambiguous and may not correspond accurately with real actions. GAIfO [3], inspired by [22],
is an online adversarial framework that couples the process of learning from expert observations
with RL training. GAIfO learns a discriminator to evaluate the similarity between online-collected
observations and expert demonstrations. Although helpful in mitigating compounding error [3], it
shows limited applicability in environments with high-dimensional observations. Follow-up methods
[12, 13] pay more attention to visual-observation environments, but require vector-state in expert
observations to either learn a feasible policy or proper visual representations. More importantly,
learning a discriminator online is less sample-efficient, compared to LfO via offline pretraining. A
recent attempt [23] demonstrates some progress in action-free offline pretraining, but return-to-gos
are indispensable in addition to observations because of upside down reinforcement learning (UDRL)
framework [24]. Moreover, it only shows satisfactory results in vector-observation environments
like MuJoCo. In this work, we focus on reinforcement learning from offline pretraining on visual
observations, which is a more general and practical setting.

Visual Representation Learning in RL. High-quality visual representations are crucial for LfVO.
Many previous works [25, 26, 27, 9, 10, 11] have contributed to this in various ways. For example,
[25] employs GANs to learn universal representations from different viewpoints, and [26, 27]
learn representations via contrastive learning to associate pairs of observations separated by a short
time difference. In terms of LfVO, a wide range of methods such as [9, 10, 11] learn temporally
continuous representations in a self-supervised manner and utilize temporal distance to assess the
progress of demonstrations. They are easy to implement but are usually applied in robotic control
tasks. Nevertheless, in games like Atari, adjacent image observations may exhibit abrupt or subtle
changes due to respawn settings or unanticipated events, not following a gradual change along the
timeline. Moreover, over-reliance on temporal information often results in over-optimistic estimates
of task progress [15], potentially misleading RL training.

Transformer in RL. Transformer [28] is widely acknowledged as a kind of powerful structure for
sequence modeling, which has led to domination in a variety of offline RL tasks. Decision Transformer
(DT) [17] and Trajectory Transformer (TT) [29] redefine the offline RL problem as a context-
conditioned sequential problem to learn an offline policy directly, following the UDRL framework
[24]. DT takes states, actions, and return-to-gos as inputs and autoregressively predicts actions to
learn a policy. TT predicts the complete sequence dimension by dimension and uses beam search
for planning. MGDT [30] samples from a learned return distribution to avoid manually selecting
expert-level returns as DT. ODT [31] extends DT to bridge the gap between offline pretraining and
online fine-tuning.

3 Methodology

3.1 Preliminaries

Reinforcement Learning. The RL problem can be formulated as a Markov decision process (MDP)
[32], which can be represented by a tupleM =< S,A, P , R, γ, ρ0 >. S denotes the state space
and A denotes the action space. P : S × A × S → [0, 1) is the state transition function and
R : S × A → R is the reward function. γ ∈ [0, 1] is the discount factor and ρ0 : S → [0, 1]
represents the initial state distribution. The objective is to find a policy π(a|s) : S → A, which
maximizes the expected discounted return:

J(π) = Eρ0,at∼π(·|st),st∼P

[∞∑
t=0

γtr (st, at)

]
. (1)

Transformer. Stacked self-attention layers with residual connections in Transformer is instrumental
in processing long-range dependencies, each of which embeds n input tokens {xi}ni=1 and outputs

3

n embeddings {zi}ni=1 of the same dimensions considering the information of the whole sequence.
In this study, we utilize the GPT [33] architecture, an extension of the Transformer model, that
incorporates a causal self-attention mask to facilitate autoregressive generation. Specifically, each
input token xi is mapped to a key ki, a query qi, and a value vi through linear transformations,
where zi is obtained by computing the weighted sum of history values v1:i, with attention weights
determined by the normalized dot product between the query qi and history keys k1:i:

zi =

i∑
j=1

softmax({q⊺i , kj′}ij′=1)j · vj . (2)

The GPT model only attends to the previous tokens in the sequence during training and inference,
thereby avoiding the leakage of future information, which is appropriate in state prediction.

Learning from Observation. The goal is to learn a policy from an expert state sequence dataset
De = {τ1, τ2, . . . , τm}, τ i = {si1, si2, . . . , sin}, sij ∈ S . Denote the transition distribution as µ(s, s′).
The objective of LfO can be formulated as a distribution matching problem, finding a policy that
minimizes the f -divergence between µπ(s, s′) induced by the agent and µe(s, s′) induced by the
expert [7]:

JLfO (π) = Eτ i∼De,(s,s′)∼τ iDf [µ
π (s, s′) ∥µe (s, s′)] . (3)

It is almost impossible to learn a policy directly from the state-only dataset De. However, our
delicately designed framework (see Figure 1) effectively captures transition features in expert demon-
strations to provide informative guidance for RL agents, which will be expounded in the following.

3.2 Offline Pretraining Framework

emb. + pos. enc.

decoder

Causal Self-Attention Module

84

844

Feature Encoder

TDR Predictor

……

Figure 2: State-to-Go Transformer

STG Transformer is built upon GPT [33] similar
to DT [17], but with a smaller scale and more struc-
tural modifications to better handle state sequence
prediction tasks. Unlike DT, in our setting, neither
the action nor the reward can be accessible, so the
STG Transformer primarily focuses on predicting the
next state embedding given a sequence of states.

As depicted in Figure 2, first we concatenate a few
consecutive image frames in the expert dataset to ap-
proximate a single state st. Then, a sequence of n
states {st, . . . , st+n−1} are encoded into a sequence
of n token embeddings {et, . . . , et+n−1} by the fea-
ture encoder Eξ composed of several CNN layers and
a single-layer MLP, where et = Eξ(st). A group of
learnable positional embedding parameters is added
to the token embedding sequence to remember tem-
poral order. These positional-encoded embeddings
are then processed by the causal self-attention mod-
ule which excels in incorporating information about
the previous state sequence to better capture temporal
dependencies, followed by layer normalization. The
linear decoder outputs the final latent prediction sequence {êt+1, . . . , êt+n}. Denote the positional
encoding, transition predicting, and linear decoding model together as Tσ. It is worth noting that
instead of predicting the embeddings of the next state sequence directly, we predict the embedding
change and combine it with token embeddings in a residual way, which is commonly applied in
transition prediction [4] and trajectory forecasting [34] to improve prediction quality.

For simplicity, in further discussion we will refer to Tσ(et) directly as the predicted êt+1.

Expert Transition Discrimination. Distinguishing expert transiting patterns is the key to leveraging
the power of offline expert datasets to improve sample efficiency in online RL. Traditional online
adversarial methods [3, 12, 13] employ a discriminator to maximize the logarithm probability of
transitions sampled from expert datasets while minimizing that from transitions collected online,
which is often sample-inefficient in practice. Moreover, in the case of visual observation, the
traditional discriminator may rapidly and strictly differentiate expert transitions from those collected

4

online within a few updates. As a result, the collected observations will be assigned substantially low
scores, which makes it challenging for policy improvement and results in poor performance.

To overcome these limitations, we draw inspiration from WGAN [35] and adopt a more generalized
distance metric, known as the Wasserstein distance, to measure the difference between the distributions
of expert and online transitions. Compared to the sigmoid probability limited in [0, 1], the Wasserstein
distance provides a wider range and more meaningful measure of the difference between two
transition distributions, as it captures the underlying structure rather than simply computing the
probability. More importantly, unlike traditional online adversarial methods like GAIfO [3] that use
the Jensen-Shannon divergence or Kullback-Leibler divergence, the Wasserstein distance is more
robust to the issues of vanishing gradients and mode collapse, making offline pretraining possible.
Specifically, two temporally adjacent states st, st+1 are sampled from the expert dataset, then we
have et = Eξ (st) , et+1 = Eξ (st+1), and êt+1 = Tσ (Eξ (st)). The WGAN discriminator Dω aims
to maximize the Wasserstein distance between the distribution of expert transition (et, et+1) and the
distribution of predicted transition (et, êt+1), while the generator tries to minimize it. The objective
can be formulated as:

min
ξ,σ

max
w∈W

Eτ i∼De,(st,st+1)∼τ i [Dω (Eξ (st) , Eξ (st+1))−Dω (Eξ (st) , Tσ (Eξ (st)))] . (4)

{Dω}ω∈W represents a parameterized family of functions that are 1-Lipschitz, limiting the variation
of the gradient. We clamp the weights to a fixed box (W = [−0.01, 0.01]l) after each gradient update
to have parameters w lie in a compact space. Besides, to suppress the potential pattern collapse,
an additional L2 norm penalizes errors in the predicted transitions, constraining all et and êt in a
consistent representation space. Thus, the loss functions can be rewritten as follows.

For discriminator:

min
w∈W

Ldis = Eτ i∼De,(st,st+1)∼τ i [Dω (Eξ (st) , Tσ (Eξ (st)))−Dω (Eξ (st) , Eξ (st+1))] . (5)

For STG Transformer (generator):

min
ξ,σ
Ladv + Lmse =− Eτ i∼De,st∼τ iDω (Eξ (st) , Tσ (Eξ (st)))

+ Eτ i∼De,(st,st+1)∼τ i∥Tσ (Eξ (st))− Eξ (st+1) ∥2. (6)

By such an approach, the discriminator can distinguish between expert and non-expert transitions
without collecting online negative samples, providing an offline way to generate intrinsic rewards for
downstream reinforcement learning tasks.

Temporally-Aligned Representation Learning. Having a high-quality representation is crucial
for latent transition prediction. To ensure the embedding is temporally aligned, we devise a self-
supervised auxiliary module, named temporal distance regressor (TDR). Since the time span between
any two states si and sj in a state sequence may vary significantly, inspired by [36], we define symlog
temporal distance between two embeddings ei = Eξ (si) and ej = Eξ (sj):

tij = sign(j − i) ln(1 + |j − i|). (7)

This bi-symmetric logarithmic distance helps scale the value and accurately capture the fine-grained
temporal variation. The TDR module Pϕ consists of MLPs with 1D self-attention for symlog
prediction. The objective of TDR is to simply minimize the MSE loss:

min
ξ,ϕ
Ltdr = Eτ i∼De,(si,sj)∼τ i ∥Pϕ (Eξ (si) , Eξ (sj))− tij∥2 . (8)

Offline Pretraining. In our offline pretraining, the transition predictor Tσ and transition discriminator
Dω share the same feature encoder Eξ similar to online methods [37], which allows them to both
operate in an easily-predictable and temporally-continuous representation space.

At each training step, a batch of transitions is randomly sampled from the expert dataset. The model is
trained autoregressively to predict the next state embedding without accessing any future information.
When backpropagating, Lmse and Ladv concurrently update Eξ and Tσ to provide high-quality visual
embeddings as well as accurate embedding prediction. Ltdr is responsible for updating the Eξ and
Pϕ as an auxiliary component, and Ldis updates Dω . Algorithm 1 in Appendix A details the offline
pretraining of the STG Transformer.

5

3.3 Online Reinforcement Learning

Intrinsic Reward. For downstream RL tasks, our idea is to guide the agent to follow the pretrained
STG Transformer to match the expert state transition distribution. Unlike [15], our experimental
results show that our WGAN model is robust enough to offer a more discriminative assessment of
state transitions. That is, the WGAN discriminator can clearly distinguish between the state sequences
collected under the learning policy and the expert state sequences, without fine-tuning. Thus, we use
the discrimination score as the intrinsic reward for online RL. Moreover, we do not use ‘progress’
like what is done in [9]. This is because, in games with multiple restarts, progress signals can easily
be inaccurate and hence mislead policy improvement, while the WGAN discriminator mastering the
principle of transitions can often make the correct judgment. The intrinsic reward at timestep t is
consequently defined as follows:

rit = −
[
Dω

(
Eξ (st) , Tσ (Eξ (st))

)
−Dω

(
Eξ (st) , Eξ (st+1)

)]
. (9)

A larger rit means a smaller gap between the current transition and the expert transition.

Online Learning Procedure. Given an image observation sequence collected by an agent, the feature
encoder first generates corresponding visual representations, followed by the STG Transformer
predicting the embeddings of the next state under expert transition. Then the discriminator compares
the difference between real transitions and predicted transitions. Their Wasserstein distances, as
intrinsic rewards ri, is used to calculate generalized advantage, based on which the agent policy πθ

is updated using PPO [38]. It is worth noting that the agent learns the policy merely from intrinsic
rewards and environmental rewards are not used.

4 Experiments

In this section, we conduct a comprehensive evaluation of our proposed STG on diverse tasks from
two environments: classical Atari environment and an open-ended Minecraft environment. Among
the three mainstream methods mentioned in Section 1, goal-oriented methods are not appropriate
for comparison because there is no pre-defined target state. Therefore, we choose GAIfO [3], a
GAN-based method that learns an online discriminator for state transitions to provide probabilistic
intrinsic reward signals, and ELE [9], a representation-learning method that pretrains an offline
progress model to provide monotonically increasing progression rewards, as our baselines. Through
extensive experiments, we answer the following questions:

• Is our proposed framework effective and efficient in visual environments?

• Is our offline pretrained discriminator better than the one which is trained online?

• Does TDR make a difference to visual representations? And do we need to add ‘progress’
rewards, as is done in ELE?

For each task, we conduct 4 runs with different random seeds and report the mean and standard
deviation. To maintain consistency across all algorithms, the same network architecture, including
the feature encoder and discriminator, is applied for each algorithm. For GAIfO, similar to [37], the
discriminator and policy network share the same visual encoder. For ELE, we use one-step transition
for progress prediction, which is aligned with our STG algorithm.

4.1 Atari

Atari Expert Datasets. Atari is a well-established benchmark for visual control tasks and also a
popular testbed for evaluating the performance of various LfVO algorithms. We conduct experiments
on four Atari games: Breakout, Freeway, Qbert, and Space Invaders. To ensure the quality of expert
datasets, two approaches are utilized to collect expert observations. For Qbert and SpaceInvaders, we
collect the last 105 transitions from Google Dopamine [39] DQN replay experiences. For Breakout
and Freeway, we find that part of the transitions from Dopamine are not exactly expert transitions.
Therefore, we alternatively train a SAC agent [40] from scratch for 5× 106 steps and leverage the
trained policy to gather approximately 50 observation trajectories in each environment to construct
the expert dataset.

6

0.0 0.5 1.0 1.5 2.0
Transition ×107

0

100

200

300 STG

ELE

GAIfO

(a) Breakout

0 1 2 3 4 5
Transition ×106

0

5

10

15

20

STG

ELE

GAIfO

(b) Freeway

0.00 0.25 0.50 0.75 1.00
Transition ×107

0

10000

20000

30000
STG

ELE

GAIfO

(c) Qbert

0.00 0.25 0.50 0.75 1.00
Transition ×107

100

200

300

400

500

600 STG

ELE

GAIfO

(d) Space Invaders

Figure 3: The episodic return of STG and baselines in Atari games. Poor discrimination guidance
may account for GAIfO’s unsatisfactory performance. Over-optimistic progress information limits
the capability of ELE. Our STG combines the advantage of adversarial learning and the benefit of
representation learning, showing substantially better performance in four Atari games.

0 250 500 750 1000
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

STG
ELE

(a) Pick a flower

0 250 500 750 1000
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

STG
ELE

(b) Milk a cow

0 250 500 750 1000
Epoch

0.0

0.1

0.2

0.3

0.4

STG
ELE

(c) Harvest tallgrass

0 250 500 750 1000
Epoch

0.00

0.02

0.04

0.06

0.08

STG
ELE

(d) Gather wool

Figure 4: Average success rates of STG and ELE in Minecraft tasks, where STG substantially out-
performs ELE, demonstrating its superiority over ELE in challenging tasks with partial observations.

Performance in Atari Games. As illustrated in Figure 3, STG outperforms the two baselines
across all four games. In Breakout, STG demonstrates a significant improvement both in the final
performance and sample efficiency compared to the baselines. This is attributed to its ability to
incorporate expert skills into the learned policy. We observe that the agent successfully learns to
obtain more intrinsic rewards by bouncing the ball up into the top gaps to hit the upper-level bricks
within a limited number of update steps, while the other two methods fail. In Freeway, STG rapidly
converges, while the baselines suffer from severe fluctuations, accentuating the data efficiency and
robustness of STG. In Qbert and Space Invaders, our STG achieves a prominent breakthrough in the
later stages, substantially outperforming ELE and GAIfO.

In Table 1, we further show the expert-level performance by listing the average episodic returns
of offline datasets and PPO learned from scratch with environmental rewards for comparison. The
final scores of STG in Breakout and Qbert exceed expert performance, demonstrating its remarkable
potential for both imitating expert observations and exploring better policies simultaneously.

Table 1: Mean final scores of last 100 episodes on Atari games. The last two columns display the
average episodic scores of expert datasets and PPO with environmental rewards reported in [38].

Environment GAIfO ELE STG Expert PPO

Breakout 1.5 22.0 288.8 212.5 274.8
Freeway 0.6 2.7 21.8 31.9 32.5
Qbert 394.4 4698.6 27234.1 15620.7 14293.3
Space Invaders 260.2 384.6 502.1 1093.9 942.5

During the training process, we observe that GAIfO, primarily motivated by online discrimination,
tends to get stuck in a suboptimal policy and struggles to explore a better policy. This is because the
discriminator can easily distinguish between the visual behavior of the expert and the imitator based
on relatively insignificant factors within just a few online interactions. In contrast, STG learns better
temporally-aligned representations in an offline manner, enabling the discriminator to detect more
substantial differences. Besides, instead of relying on probability, STG employs the Wasserstein
distance metric to provide more nuanced and extensive reward signals. Consequently, even without
fine-tuning during the online RL process, STG can offer valuable guidance to the RL agent.

Additionally, from Figure 3a and 3b we find that ELE drops in final performance primarily due
to the over-optimistic progress, which will be further investigated in Section 4.3. In comparison,

7

0.0 0.5 1.0 1.5 2.0
Transition ×107

0

100

200

300
STG

STG-

(a) Breakout

0 2 4
Transition ×106

0

5

10

15

20

STG

STG-

(b) Freeway

0.00 0.25 0.50 0.75 1.00
Transition ×107

0

10000

20000

30000

STG

STG-

(c) Qbert

0.00 0.25 0.50 0.75 1.00
Transition ×107

200

400

STG

STG-

(d) Space Invaders

0 250 500 750 1000
Epoch

0.00

0.05

0.10

0.15

0.20

STG
STG-

(e) Pick a flower

0 250 500 750 1000
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

STG
STG-

(f) Milk a cow

0 250 500 750 1000
Epoch

0.0

0.1

0.2

0.3

STG
STG-

(g) Harvest tallgrass

0 250 500 750 1000
Epoch

0.00

0.02

0.04

0.06

0.08

STG
STG-

(h) Gather wool

Figure 5: Ablation studies on the TDR module in Atari and Minecraft tasks. The removal of the TDR
loss from STG, denoted as STG-, induces a decline in performance and sample efficiency, revealing
the TDR module plays a vital role in STG.

STG ensures precise expert transition prediction and discriminative transition judgment, avoiding
over-optimistically driving the agent to transfer to new states.

It is worth noting that, for each Atari task, we pretrain the STG Transformer using the corresponding
individual observation dataset. We also report the results of using multi-task datasets to pretrain the
STG Transformer for all Atari tasks in Appendix E.

4.2 Minecraft

Minedojo [41], built upon one of the most popular video game Minecraft, provides a simulation plat-
form with thousands of diverse open-ended tasks. In contrast to Atari games, the extensive behavioral
repertoire of the agent results in a considerably large observation space in a 3D viewpoint, making
it exceedingly difficult to extract meaningful information from visual observations. Furthermore,
open-ended tasks necessitate the agent learns a diverse policy applicable to various objectives from a
small observation dataset with a narrow expert policy distribution. Limited research has investigated
the efficiency of LfVO in such challenging environments. We evaluate STG on four Minecraft tasks,
including “pick a flower”, “milk a cow”, “harvest tallgrass”, and “gather wool”, demonstrating its
applicability and effectiveness in these complex settings. Among the four tasks, “gather wool” is
the most challenging, as it requires the agent to locate a randomly initialized sheep, shear it, and
then collect the wool on the ground. All four tasks are sparse-reward, where only a binary reward is
emitted at the end of the episode, thus the performance is measured by success rates.

Minecraft Expert Dataset. Recently, various algorithms, e.g., Plan4MC [16] and CLIP4MC [42]
have been proposed for Minecraft tasks. To create expert datasets, for each task, we utilize the learned
policies of these two algorithms to collect around 5× 104 observations from expert trajectories.

Performance in Minecraft. The results on Atari show that GAIfO is inefficient in learning from
visual observation. Therefore, in Minecraft, we focus on the comparison between ELE and STG.
As depicted in Figure 4, the success rates across four Minecraft tasks reveal a consistent superiority
of STG over ELE. Notably, in the "milk a cow" task, STG attains a success rate approaching 25%,
significantly eclipsing the 5% success rate of ELE. The reasons for this stark contrast in performance
are not yet entirely elucidated. However, a plausible conjecture could be attributed to the task’s
primary objective, i.e. locating the cow. Given STG’s adeptness in learning state transitions, it can
effectively accomplish this subgoal. In contrast, ELE, due to its tendency for over-optimistic progress
estimations, may lose the intended viewpoint with relative ease.

4.3 Ablation

TDR Ablation. We examine the role of the TDR module in enhancing performance and representation
quality. An ablation, named STG-, is conducted by removing the TDR loss Ltdr from STG. Thus,

8

the feature encoder Eξ and the STG Transformer Tσ are trained by a linear combination of Lmse and
Ladv . The results are shown in Figure 5, where STG is substantially superior to STG- in most tasks.

STG STG-

Figure 6: T-SNE visualization of embeddings of a sampled
trajectory in Qbert.

In order to figure out the underlying
reasons for their discrepancy in per-
formance, we compare the visualiza-
tion of embeddings encoded by STG
and STG-. We randomly select an ex-
pert trajectory from Qbert and utilize
t-SNE projection to visualize their em-
bedding sequences. As illustrated in
Figure 6, the embeddings learned by
STG exhibit remarkable continuity, in
stark contrast to the scattered and dis-
joint embeddings produced by STG-.
The superior temporal alignment of
the STG representation plays a critical role in capturing latent transition patterns, thereby providing
instructive information for downstream RL tasks.

Progression Reward. We conduct experiments to figure out whether it is necessary to additionally add
progression rewards derived from TDR, like what ELE does. We train the agent under the guidance
of both the discriminative and progression rewards from the same pretrained STG Transformer in
Atari tasks, denoted as STG*. As illustrated in Figure 7, STG outperforms STG* in all tasks. We
analyze that, similar to ELE, progression rewards from TDR over-optimistically urge the agent to
"keep moving" to advance task progress, which however can negatively impact policy learning. For
example, on certain conditions such as Breakout or Freeway, maintaining a stationary position may
facilitate catching the ball or avoiding collision more easily, thereby yielding higher returns in the
long run. Therefore, we do not include the over-optimistic progression rewards in our design.

0.0 0.5 1.0 1.5 2.0
Transition ×107

0

100

200

300
STG

STG*

(a) Breakout

0 2 4
Transition ×106

0

5

10

15

20

STG

STG*

(b) Freeway

0.00 0.25 0.50 0.75 1.00
Transition ×107

0

10000

20000

30000

STG

STG*

(c) Qbert

0.00 0.25 0.50 0.75 1.00
Transition ×107

200

400

STG

STG*

(d) Space Invaders

Figure 7: Atari experiments comparing using discriminative rewards (STG) and using both discrimi-
native rewards and progression rewards (STG*).

In summary, our experimental results provide strong evidence for the ability of STG to learn from
visual observation, substantially outperforming baselines in a variety of tasks. The ablation study
highlights the importance of the TDR module for temporally aligned representations. However, TDR
may not be used to generate progression rewards that drive over-optimistic behaviors.

5 Conclusion and Future Work

In this paper, we introduce the State-To-Go (STG) Transformer, offline pretrained to predict latent
state transitions in an adversarial way, for learning from visual observation to boost downstream
reinforcement learning tasks. Our STG, tested across diverse Atari and Minecraft tasks, demonstrates
superior robustness, sample efficiency, and performance compared to baseline approaches. We are
optimistic that STG offers an effective solution in situations with plentiful video demonstrations,
limited environment interactions, and where labeling action is expensive or infeasible.

In future work, it would be worthwhile to combine our STG model with a more robust large-scale
vision foundation model to facilitate generalization across a broader range of related tasks. Besides,
our method can extend to a hierarchical framework where one-step predicted rewards can be employed
for training low-level policies and multi-step rewards for the high-level policy, which is expected to
improve performance and solve long-horizon tasks.

9

References
[1] Jack Harmer, Linus Gisslén, Jorge del Val, Henrik Holst, Joakim Bergdahl, Tom Olsson,

Kristoffer Sjöö, and Magnus Nordin. Imitation learning with concurrent actions in 3d games.
In IEEE Conference on Computational Intelligence and Games (CIG), 2018.

[2] Yuke Zhu, Ziyu Wang, Josh Merel, Andrei Rusu, Tom Erez, Serkan Cabi, Saran Tunyasuvu-
nakool, János Kramár, Raia Hadsell, Nando de Freitas, et al. Reinforcement and imitation
learning for diverse visuomotor skills. arXiv preprint arXiv:1802.09564, 2018.

[3] Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from observa-
tion. arXiv preprint arXiv:1807.06158, 2018.

[4] Ashley Edwards, Himanshu Sahni, Yannick Schroecker, and Charles Isbell. Imitating latent
policies from observation. In International Conference on Machine Learning (ICML), 2019.

[5] Nathan Gavenski, Juarez Monteiro, Roger Granada, Felipe Meneguzzi, and Rodrigo C Barros.
Imitating unknown policies via exploration. arXiv preprint arXiv:2008.05660, 2020.

[6] Rahul Kidambi, Jonathan Chang, and Wen Sun. Mobile: Model-based imitation learning from
observation alone. In Neural Information Processing Systems (NeurIPS), 2021.

[7] Zhuangdi Zhu, Kaixiang Lin, Bo Dai, and Jiayu Zhou. Off-policy imitation learning from
observations. In Neural Information Processing Systems (NeurIPS), 2020.

[8] Tanmay Gangwani, Yuan Zhou, and Jian Peng. Imitation learning from observations under
transition model disparity. In Neural Information Processing Systems (NeurIPS) Workshop on
Deep Reinforcement Learning, 2021.

[9] Jake Bruce, Ankit Anand, Bogdan Mazoure, and Rob Fergus. Learning about progress from
experts. In International Conference on Learning Representations (ICLR), 2023.

[10] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal, Sergey
Levine, and Google Brain. Time-contrastive networks: Self-supervised learning from video. In
IEEE International Conference on Robotics and Automation (ICRA), 2018.

[11] Yusuf Aytar, Tobias Pfaff, David Budden, Thomas Paine, Ziyu Wang, and Nando De Freitas.
Playing hard exploration games by watching youtube. In Neural Information Processing Systems
(NeurIPS), 2018.

[12] Faraz Torabi, Garrett Warnell, and Peter Stone. Imitation learning from video by leveraging
proprioception. In International Joint Conference on Artificial Intelligence (IJCAI), 2019.

[13] Haresh Karnan, Garrett Warnell, Faraz Torabi, and Peter Stone. Adversarial imitation learning
from video using a state observer. In International Conference on Robotics and Automation
(ICRA), 2022.

[14] Minghuan Liu, Tairan He, Weinan Zhang, Shuicheng Yan, and Zhongwen Xu. Visual imitation
learning with patch rewards. arXiv preprint arXiv:2302.00965, 2023.

[15] Youngwoon Lee, Andrew Szot, Shao-Hua Sun, and Joseph J Lim. Generalizable imitation
learning from observation via inferring goal proximity. In Neural Information Processing
Systems (NeurIPS), 2021.

[16] Haoqi Yuan, Chi Zhang, Hongcheng Wang, Feiyang Xie, Penglin Cai, Hao Dong, and Zongqing
Lu. Plan4mc: Skill reinforcement learning and planning for open-world minecraft tasks. arXiv
preprint arXiv:2303.16563, 2023.

[17] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. In Neural Information Processing Systems (NeurIPS), 2021.

[18] Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo, Pulkit Agrawal, Dian Chen, Yide Shentu,
Evan Shelhamer, Jitendra Malik, Alexei A Efros, and Trevor Darrell. Zero-shot visual imitation.
In IEEE Computer Vision and Pattern Recognition (CVPR) Workshops, 2018.

10

[19] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. In
International Joint Conference on Artificial Intelligence (IJCAI), 2018.

[20] Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. In Neural Information Processing Systems (NeurIPS), 2022.

[21] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In International Conference on Artificial
Intelligence and Statistics (AISTATS), 2011.

[22] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Neural Informa-
tion Processing Systems (NeurIPS), 2016.

[23] Deyao Zhu, Yuhui Wang, Jürgen Schmidhuber, and Mohamed Elhoseiny. Guiding online
reinforcement learning with action-free offline pretraining. arXiv preprint arXiv:2301.12876,
2023.

[24] Juergen Schmidhuber. Reinforcement learning upside down: Don’t predict rewards–just map
them to actions. In Neural Information Processing Systems (NeurIPS), 2019.

[25] Bradly C Stadie, Pieter Abbeel, and Ilya Sutskever. Third-person imitation learning. arXiv
preprint arXiv:1703.01703, 2017.

[26] Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised represen-
tations for reinforcement learning. In International Conference on Machine Learning (ICML),
2020.

[27] Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation
learning from reinforcement learning. In International Conference on Machine Learning
(ICML), 2021.

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Information Processing
Systems (NeurIPS), 2017.

[29] Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big
sequence modeling problem. In Neural Information Processing Systems (NeurIPS), 2021.

[30] Kuang-Huei Lee, Ofir Nachum, Mengjiao Sherry Yang, Lisa Lee, Daniel Freeman, Sergio
Guadarrama, Ian Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, et al. Multi-game
decision transformers. In Neural Information Processing Systems (NeurIPS), 2022.

[31] Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In International
Conference on Machine Learning (ICML), 2022.

[32] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[33] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training, 2018.

[34] Tim Salzmann, Boris Ivanovic, Punarjay Chakravarty, and Marco Pavone. Trajectron++:
Dynamically-feasible trajectory forecasting with heterogeneous data. In European Conference
on Computer Vision (ECCV), 2020.

[35] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial
networks. In International Conference on Machine Learning (ICML), 2017.

[36] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

[37] Samuel Cohen, Brandon Amos, Marc Peter Deisenroth, Mikael Henaff, Eugene Vinitsky, and
Denis Yarats. Imitation learning from pixel observations for continuous control. In Neural
Information Processing Systems (NeurIPS) Workshop on Deep Reinforcement Learning, 2021.

11

[38] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[39] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on
offline reinforcement learning. In International Conference on Machine Learning (ICML),
2020.

[40] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning (ICML), 2018.

[41] Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew
Tang, De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended
embodied agents with internet-scale knowledge. In Neural Information Processing Systems
(NeurIPS) Datasets and Benchmarks Track, 2022.

[42] Ziluo Ding, Hao Luo, Ke Li, Junpeng Yue, Tiejun Huang, and Zongqing Lu. Clip4mc: An
rl-friendly vision-language model for minecraft. arXiv preprint arXiv:2303.10571, 2023.

[43] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi
Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based
localization. In International Conference on Computer Vision (ICCV), 2017.

[44] Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning. In Interna-
tional Conference on Machine Learning (ICML), 2018.

12

A Algorithms

We present our algorithm sketches for STG Transformer offline pretraining and online reinforcement
learning with intrinsic rewards respectively.

Algorithm 1 STG Transformer Offline Pretraining

Input: STG Transformer Tσ, feature encoder Eξ, discriminator Dω, expert dataset De =
{τ1, τ2, . . . , τm}, τ i = {si1, si2, . . . }, buffer B, loss weights α, β, κ .

1: Initialize parametric network Eξ, Tσ, Dω randomly.
2: for e← 0, 1, 2 . . . do ▷ epoch
3: Empty buffer B.
4: for b← 0, 1, 2 . . . |B| do ▷ batchsize
5: Stochastically sample state sequence τ i from De.
6: Stochastically sample timestep t and n adjacent states {sit, . . . , sit+n−1} from τ i.
7: Store {sit, . . . , sit+n−1} in B.
8: end for
9: Update Dω: ω ← clip(ω − ϵ∇ωLdis,−0.01, 0.01).

10: Update Eξ and Tσ concurrently by minimizing total loss αLmse + βLadv + κLtdr.
11: end for

Algorithm 2 Online Reinforcement Learning with Intrinsic Rewards

Input: pretrained Eξ, Tσ, Dω , policy πθ, MDPM, intrinsic coefficient η.
1: Initialize parametric policy πθ with random θ randomly and resetM.
2: while updating πθ do ▷ policy improvement
3: Execute πθ and store the resulting n state transitions {(s, s′)}t+n

t .
4: Use Eξ to obtain n real latent transitions {(e, e′)}t+n

t .
5: Use Tσ to obtain n predicted latent transitions {(e, ê′)}t+n

t .
6: Use Dω to calculate intrinsic rewards: ∆t+n

t = {Dω(e, ê
′)}t+n

t − {Dω(e, e
′)}t+n

t .
7: Perform PPO update to improve πθ with respect to ri = −η∆.
8: end while

B Environment Details

B.1 Atari

We directly adopt the official default setting for Atari games. Please refer to https://www.
gymlibrary.dev/environments/atari for more details.

B.2 Minecraft

Environment Settings

Table 1 outlines how we set up and initialize the environment for each harvest task.

Table 1: Environment Setup for Harvest Tasks
Harvest Item Initialized Tool Biome

milk empty bucket plains

wool shears plains

tallgrass shears plains

sunflower diamond shovel sunflower plains

13

https://www.gymlibrary.dev/environments/atari
https://www.gymlibrary.dev/environments/atari

(a) Plains (b) Sunflower Plains

Figure 1: Biomes in Minecraft

Biomes. Our method is tested in two different biomes: plains and sunflower plains. Both the plains
and sunflower plains offer a wider field of view. However, resources and targets are situated further
away from the agent, which presents unique challenges. Figure 1a and 1b show the biomes of plains
and sunflower plains respectively.

Observation Space. Despite MineDojo offering an extensive observation space, encompassing RGB
frames, equipment, inventory, life statistics, damage sources, and more, we exclusively rely on the
RGB information as our observation input.

Action Space. In Minecraft, the action space is an 8-dimensional multi-discrete space. Table 2 lists
the descriptions of action space in the MineDojo simulation platform. At each step, the agent chooses
one movement action (index 0 to 4) and one optional functional action (index 5) with corresponding
parameters (index 6 and index 7).

Table 2: Action Space of MineDojo Environment
Index Descriptions Num of Actions

0 Forward and backward 3
1 Move left and right 3
2 Jump, sneak, and sprint 4
3 Camera delta pitch 25
4 Camera delta yaw 25
5 Functional actions 8
6 Argument for “craft” 244
7 Argument for “equip”, “place”, and “destroy” 36

C Offline Pretraining Details

Hyperparameters. Table 3 outlines the hyperparameters for offline pretraining in the first stage.

Network Structure. Different architectures for feature encoding are designed for different environ-
ments. In Atari, we stack four gray-scale images of shape (84,84) to form a 4-channel state and use
the feature encoder architecture as shown in Figure 2a. In Minecraft, a 3-channel image of shape
(160,256,3) is directly regarded as a single state, which is processed by a feature encoder with more
convolutional layers and residual blocks to capture more complex features in the ever-changing
Minecraft world. The detailed structure of the feature encoder for Minecraft is illustrated in Figure
2b. All discriminators, taking in two 512-dimension embeddings from the feature encoder, follow the
MLP structure of FC(1024,512)→FC(512,256)→FC(256,128)→FC(128,64)→FC(64,32)→FC(32,1)
with spectral normalization.

Representation Visualization. We draw inspiration from Grad-CAM [43] to visualize the saliency
map of offline-pretrained feature encoder to assess the effectiveness and advantages of the repre-
sentation of STG. Specifically, we compare the visualization results of STG and ELE in the Atari
environment as illustrated in Figure 3. Each figure presents three rows corresponding to the features
captured by the three layers of the convolutional layers, respectively. The saliency maps demonstrate
that STG exhibits a particular focus more on local entities and dynamic scenarios and effectively
ignores extraneous distractions. As a result, compared with ELE, STG shows greater proficiency in

14

Table 3: Hyperparameters for Offline Pretraining

Hyperparameter Value
STG optimizer AdamW

Discriminator optimizer RMSprop
LR 1e-4

GPT block size 128
CSA layer 3
CSA head 4

Embedding dimension 512
Batch size 16

MSE coefficient 0.5
Adversarial coefficient 0.3

TDR coefficient 0.1
WGAN clip range [-0.01,0.01]

Type of GPUs A100, or Nvidia RTX 4090 Ti

Stride:4
Conv:8×8

Relu

(1,4,84,84)

Stride:2
Conv:4×4

Relu

(1,32,20,20)

Stride:1
Conv:3×3

Relu

(1,64,9,9)

(1,64,7,7)

(1,512)

Flatten
&

Linear

(a) Atari

(1,3,256,160)

Stride:4
Conv:8×8

LeakyRelu

BatchNormResBlock

(1,32,128,80)

Stride:2
Conv:3×3

LeakyRelu

BatchNormResBlock

(1,64, 64, 40)

Stride:2
Conv:3×3

LeakyRelu

BatchNormResBlock

(1,64,32,20)

Conv:3×3
Stride:2

LeakyRelu

BatchNorm

(1,64,16,10)

Conv:3×3
Stride:2

LeakyRelu

BatchNorm

ResBlock

ResBlock

Conv:3×3
Stride:2

LeakyRelu

BatchNorm

(1,64,8,5)

(1,128,4,3)

Stride:2
Conv:3×3

LeakyRelu

BatchNormResBlock

(1,512)

Conv(in,out,3,1)

Conv(out,out,3,1)

BatchNorm

Relu

BatchNorm

Conv(in,out,3,1)
BatchNorm

Flatten
&

Linear

(b) Minecraft

Figure 2: Feature encoder structure for Atari and Minecraft

identifying information strongly correlated with state transitions, thereby generating higher-quality
rewards for downstream reinforcement learning tasks.

15

0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210
0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210

0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210
0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210

0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210
0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210

(a) Saliency maps of different CNN layers in Breakout

0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210
0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210

0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210
0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210

0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210
0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210

(b) Saliency maps of different CNN layers in Freeway

16

0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210
0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210

0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210
0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210

0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210
0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210

(c) Saliency maps of different CNN layers in Qbert

0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210
0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210

0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210
0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210

0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210
0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210

(d) Saliency maps of different CNN layers in Space Invaders

Figure 3: Saliency maps (SM) of different CNN layers in Atari tasks. The first two columns
display the normalized saliency maps and corresponding observations of STG and the last two
columns represent SM and corresponding observations of ELE. Through comparison, STG is better
at capturing fine-grained features which are strongly correlated with transitions.

17

D RL Training Details

The general training hyperparameters of PPO for downstream RL tasks in the second stage are listed
in Table 4.

Table 4: General Hyperparameters for PPO

Hyperparameter Value
Optimizer Adam

Learning rate 2.5e-4
RL discount factor 0.99

Number of workers (CPU) 1
Parallel GPUs 1
Type of GPUs A100, or Nvidia RTX 4090 Ti

Minecraft image shape (160,256,3)
Atari stacked state shape (84,84,4)

Clip ratio 0.1
PPO update frequency 0.1

Entropy coefficient 0.01

Neither the discriminative reward from STG nor the progression reward from ELE is bounded.
Therefore, it is reasonable to adjust certain hyperparameters to bring out the best performance of each
algorithm in each task. In Table 5, the coefficient of intrinsic reward η(η > 0) for different baselines
is tuned to balance the value scale and GAE λ(0 < λ < 1) is tuned to adjust the impact of intrinsic
rewards in different tasks.

Table 5: Specific Hyperparameters for Different Tasks

Task ηSTG ηELE ηGAIfO λGAE

Breakout 0.6 1.0 2.0 0.1
Freeway 2.0 0.1 1.0 0.15

Qbert 5.0 0.05 2.0 0.95
Space Invaders 6.0 0.1 2.0 0.95

Milk a Cow 1.0 0.5 - 0.8
Gather Wool 10.0 0.1 - 0.8

Harvest Tallgrass 1.0 0.1 - 0.95
Pick a Flower 1.0 0.1 - 0.95

The coefficients of STG* (noted as ηri + νr∗) in four Atari tasks are reported in Table 6.

Table 6: Coefficients for STG* in Atari Tasks

Task η ν

Breakout 0.6 0.01
Freeway 2.0 0.1

Qbert 5.0 0.03
Space Invaders 6.0 0.01

Training Details. For Minecraft tasks, we adopt a hybrid approach utilizing both PPO [38] and Self-
Imitation Learning (SIL) [44]. Specifically, we store trajectories with high intrinsic rewards in a buffer
and alternate between PPO and SIL gradient steps during the training process. This approach allows
us to leverage the unique strengths of both methods and achieve superior performance compared to
utilizing either method alone [42].

18

E Additional Experiments

Intrinsic Reward Design. In Equation (9), we define our intrinsic reward ri as the difference
between rguide and rbase:

rit = Dω

(
Eξ (st) , Eξ (st+1)

)
−Dω

(
Eξ (st) , Tσ (Eξ (st))

)
= rguidet − rbaset . (10)

On the one hand, pretrained Dω clearly provides informative judgment rguide of transition quality
during online interaction. On the other hand, the baseline reward rbase, solely relying on the current
state st, serves as a baseline to normalize ri to a relatively lower level. In this section, we aim to
investigate the necessity of incorporating rbase.

To assess the significance of rbase, we conducted experiments on the four Atari tasks utilizing only
rguide as the intrinsic reward, which is similar to previous adversarial methods like GAIfO [3]. In
order to bring the scale of rguide in line with ri, we employ running normalization and bound the
values within the range of [−1, 1] to mitigate the negative influence of outliers. All other settings
remain unchanged. We denote this ablation baseline as STG’.

As illustrated in Figure 4, rguide yields comparable final performance in Breakout and Space Invaders
while failing to achieve satisfactory performance in Freeway and Qbert. In contrast, by leveraging
rbase, which provides a unique reference from expert datasets for each individual st, we observe
reduced variance and improved numerical stability compared to the running normalization trick that
calculates batch means for normalization.

0.0 0.5 1.0 1.5 2.0
Transition 1e7

0

100

200

300 STG'
STG

(a) Breakout

0 2 4
Transition 1e6

0

5

10

15

20

STG'
STG

(b) Freeway

0.00 0.25 0.50 0.75 1.00
Transition 1e7

0

10000

20000

30000 STG'
STG

(c) Qbert

0.00 0.25 0.50 0.75 1.00
Transition 1e7

200

400

600 STG'
STG

(d) Space Invaders

Figure 4: Atari experiments comparing using rguide (STG’) and ri (STG) as intrinsic reward.

Multi-Task STG Transformer. We further assess the efficacy of multi-task adaptation of the STG
Transformer. To this end, a new instance of the STG Transformer, with the same network architecture,
is pretrained on all Atari training samples encompassing the four downstream Atari tasks. Considering
the four times increase in the size of the training dataset, we enlarge the size of the STG Transformer
by increasing the number of heads (24) and layers (16) within the multi-head causal self-attention
modules, augmenting the model capacity for about four times. All training parameters remain the
same except for intrinsic coefficient η for each task (5 for Breakout, Qbert, and Space Invaders and
10 for Freeway). The comparable performance across the four Atari tasks, as shown in Figure 5,
reveals the potential of pretraining the STG Transformer on expansive multi-task datasets for guiding
downstream tasks.

0.0 0.5 1.0 1.5 2.0
Transition ×107

0

100

200

300 STG-Multi

STG

(a) Breakout

0 2 4
Transition ×106

0

5

10

15

20

STG-Multi

STG

(b) Freeway

0.00 0.25 0.50 0.75 1.00
Transition ×107

0

10000

20000

30000
STG-Multi

STG

(c) Qbert

0.00 0.25 0.50 0.75 1.00
Transition ×107

200

400

600

STG-Multi

STG

(d) Space Invaders

Figure 5: Atari performence under guidance of multi-task STG Transformer (STG-Multi) and
single-task STG Transformer (STG).

19

	Introduction
	Related Work
	Methodology
	Preliminaries
	Offline Pretraining Framework
	Online Reinforcement Learning

	Experiments
	Atari
	Minecraft
	Ablation

	Conclusion and Future Work
	Algorithms
	Environment Details
	Atari
	Minecraft

	Offline Pretraining Details
	RL Training Details
	Additional Experiments

