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Abstract

One of the essential missions in the AI research commu-
nity is to build an autonomous embodied agent that can at-
tain high-level performance across a wide spectrum of tasks.
However, acquiring reward/penalty in all open-ended tasks
is unrealistic, making the Reinforcement Learning (RL) train-
ing procedure impossible. In this paper, we propose a novel
cross-modal contrastive learning framework architecture,
CLIP4MC, aiming to learn an RL-friendly vision-language
model that serves as a reward function for open-ended tasks.
Therefore, no further task-specific reward design is needed.
Intuitively, it is more reasonable for the model to address
the similarity between the video snippet and the language
prompt at both the action and entity levels. To this end, a mo-
tion encoder is proposed to capture the motion embeddings
across different intervals. The correlation scores are then
used to construct the auxiliary reward signal for RL agents.
Moreover, we construct a neat YouTube dataset based on
the large-scale YouTube database provided by MineDojo.
Specifically, two rounds of filtering operations guarantee
that the dataset covers enough essential information and
that the video-text pair is highly correlated. Empirically, we
show that the proposed method achieves better performance
on RL tasks compared with baselines.

1. Introduction
Recently, autonomous agents have had great success in

Atari games [19], Starcraft [23], Dota2 [3], and Go [27].
However, these popular works have also been criticized for
poor generalization, i.e., agents cannot generalize beyond a
very specific set of tasks, unlike humans that continuously
learn from open-ended tasks. Thus, building an autonomous
embodied agent that can attain high-level performance across
a wide spectrum of tasks has been one of the greatest chal-
lenges facing the AI research community.

One main challenge is that acquiring reward/penalty in all
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Figure 1: Key entities in our YouTube dataset.

open-ended tasks is unrealistic, making the Reinforcement
Learning (RL) training procedure impossible. To this end,
MineDojo [9] has proposed an internet-scale, multi-modal
knowledge base of YouTube videos to facilitate learning in
open-ended settings. With the advent of a such large-scale
database, agents are possible to harvest practical knowledge
encoded in large amounts of media like human beings. More-
over, a video-text contrastive framework, MineCLIP [9], is
proposed to utilize the internet-scale domain knowledge. In
more detail, the learned correlation score between the visual
observation and the language prompt can be used effectively
as an open-vocabulary, massively multi-task reward function
for RL training. Therefore, no further task-specific reward
design is needed for open-ended tasks.

However, the autonomous embodied agent requires the
contrastive learning framework to provide a more instructive
correlation score. Give the partial observations, e.g., video
snippet, and the language prompt that describes the task,
the agent needs to figure out three non-trivial matters to
better evaluate the current state. First, whether the target
entities are present within its field of vision? MineCLIP
has addressed this question. Second, whether the agent has
made the right action toward the right target? Unlike vision
tasks, RL tasks concern how agents ought to take action.
Namely, we should measure the similarity between the video
snippet and the language prompt at the action level, not only
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at the entity level. Third, what is the relationship between
each video snippet and the degree of completion of the task?
To illustrate, the procedure of completing one single task
contains numerous video snippets. However, different video
snippets represent different levels of completion of the task
even though they may have similar correlation scores with
the language prompt. The higher level of completion of the
task, the closer the video snippets are to the target state. Thus,
we argue it is important to incorporate the level of completion
of the task into the reward function. At the current stage,
we only attempt to address the second problem so that the
contrastive learning framework can be more RL-friendly.

In this paper, we propose an upgraded cross-modal con-
trastive learning framework, CLIP4MC, to provide a more
RL-friendly reward function. Specifically, a motion encoder
is proposed to extract the motion features of the video snip-
pet. Intuitively, the atomic actions are captured in the dif-
ference between two adjacent frames. A sequence of such
actions corresponds to the behavior described in the lan-
guage prompt. Therefore, we stack the two frames with
different intervals as atomic action representations of differ-
ent amplitudes. After extracting motion features from those
representations, we need to summarize a series of motion
features at the same interval as the motion embedding and
multi-interval motion embeddings as the final embedding.
Motion embedding, together with video embedding, is used
to measure the correlation score with the language prompt
at both entity and action levels. Based on the score, we can
render the auxiliary reward signal of the current state to the
agent. The RL training is finally possible.

Though a large-scale database is provided by MineDojo,
it contains significant noise due to its nature as an online re-
source. Since MineDojo has not released the training dataset
for MineCLIP, we attempt to construct a neat YouTube
dataset to facilitate the learning of basic game concepts.
In more detail, we have done two rounds of filtering op-
erations to guarantee two things. One is that the dataset
covers enough essential information, including key entities
and basic semantic events. Another is that there is a stronger
content correlation between the video and transcript clips.
Note that our proposed method is trained on our YouTube
dataset, and we evaluate our method on MineDojo Program-
matic tasks, including Harvest and Finding. Results show
that our method can provide a more friendly reward signal
for the RL training procedure. In addition, we validate vari-
ous design choices of CLIP4MC through extensive ablation
studies.

Our main contributions, among others, are:

• We bring up three key issues we need to solve for learn-
ing a vision-language model as the universal reward
function for open-ended tasks.

• We build and release a neat vision-language dataset for

Minecraft using the YouTube videos from MineDojo.

• We propose an RL-friendly vision-language model,
CLIP4MC, which aligns actions implicitly contained in
the video and transcript clips in addition to entities.

2. Related Work
Video-Text Retrieval. Video-text retrieval plays an essen-
tial role in multi-modal research and has been widely used
in many real-world web applications. Recently, the pre-
trained models have dominated this line of research with
noticeable results on both zero-shot and fine-tuned retrieval.
Especially, BERTs [6], ViTs [7], and CLIP [22], are used
as the backbones to extract the text or video embedding.
The cross-modal embeddings are then matched with specific
fusion networks to find the correct video-text pair.

In more detail, CLIP4CLIP [18] proposes three different
similarity modules to calculate the correlation between video
and text embeddings. HiT [17] performs hierarchical match-
ing at two different levels, i.e. semantic level and feature
level. Note that semantic level and feature level features
are from the transformer network’s higher and lower feature
layers, respectively. Frozen [1] proposes a dual encoder ar-
chitecture that utilizes the flexibility of a transformer visual
encoder to train from images or video clips with text captions.
Moreover, MDMMT [8] adopts several pre-training models
as encoders and it shows the CLIP-based model performs
the best. Therefore, our model follows this line of research
by using the pre-trained model, CLIP [22], to extract the
feature embeddings.

Minecraft for AI Research. As an open-world video game
with an egocentric vision, Minecraft is a splashy and impor-
tant domain in RL due to the nature of the sparse reward,
large exploration space, and long-term episodes. Since the
release of the Malmo simulator [13] and later the MineDojo
simulator [9], a series of methods [28, 26, 10, 16] have at-
tempted to train an agent to complete tasks in Minecraft.
Approaches such as hierarchical RL, goal-based RL, and
reward shaping have been adopted to alleviate the sparse
reward and exploration difficulty for the agent. Recently,
DreamerV3 [12] succeeds in training agents in Minecraft
with a learned world model. More recently, DEPS [29] in-
troduces a pre-trained large language model for sub-goal
planning, combined with goal-based bottom-level policy [4]
learned from behavior cloning of offline data to successfully
complete a series of Minecraft tasks.

In addition, some works attempt to incorporate the hu-
man player experience. MineRL [11] collected 60M player
demonstrations with action labels, motivating some methods
[25, 15] based on behavior cloning. As well-labeled data is
limited in content, some works instead attempt to use vast
and diverse but unlabelled data from the Internet. MineDojo
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... at some point you will lose there
too or also hearts there spider was
like being completely blown away I
don 't assume anything at ...

... so here I'm with nick and we've
got look at my inventory and his in-
ventory looks similar this is gonna
be interesting so four...

...  give it  I'm a little chicken just
laying around by any chance a lot
of arrows going on down here  I'm 
guessing most of  ...

 irrelavant video content

 mismatched video content

 matched video content

Figure 2: Illustration of the YouTube video database. The screenshots of video clips are on the left and key entities are circled
in red. The corresponding transcript clips are on the right and key entities are marked in red. We give examples of irrelevant,
mismatched, and matched video content in the YouTube video database.

[9] collects 730K+ narrated Minecraft videos from YouTube
to learn a vision-language model (MineCLIP) providing aux-
iliary reward signals. VPT [2] uses action-labeled data to
train an inverse dynamic model to label internet-scale data
and then conduct behavior cloning.

Unlike these works (except MineCLIP) that incorporate
the human experience and require a large number of demon-
strations with action labels to train the agent, our work fo-
cuses on only using the data without action labels to assist
agent learning, which is more friendly with data collection
and has the potential to scale in the future.

3. Background

MineDojo tasks. MineDojo has provided thousands of
benchmark tasks with its simulator APIs, which can be used
to develop generally capable agents in Minecraft. Further-
more, the tasks can be divided into two categories, Program-
matic and Creative tasks. The former has ground-truth sim-
ulator states to assess whether the task has been completed.
The latter, however, do not have well-defined success criteria
and tend to be more open-ended, but have to be evaluated by
humans.

We mainly focus on Programmatic tasks since they can
be automatically assessed. In addition, MineDojo provides
4 categories of programmatic tasks, including Harvest, Com-
bat, Survival, and Tech Tree, with 1,581 template-generated
natural language goals to evaluate the agent’s different ca-

pabilities. Among these tasks, Survival and Tech Tree tasks
are harder than Harvest and Combat. At the current stage,
MineCLIP only expresses the promising potential in some
Harvest and Combat tasks. Harvest means finding, obtaining,
cultivating, or manufacturing hundreds of materials and ob-
jects. Combat means fighting various monsters and creatures
that require fast reflexes and martial skills.

POMDP. We model the programmatic task as a partially
observable Markov decision process (POMDP) [14]. At
each timestep t, the agent obtains the partial observation
ot from the global state st and a language prompt G, takes
action at following its policy π(at|ot), and receives a reward
rt = Φ(Vt, G), where Vt is the fixed-length sequence of
observations till t (thus a video snippet) and Φ maps Vt and
G to a scalar value. Then the environment transitions to the
next state st+1 given the current state and action according
to transition probability function T (st+1|st, at). The agent
aims to maximize the expected returnR = Eπ

∑T
t=1 γ

t−1rt,
where γ is the discount factor and T is the episode time
horizon.

4. YouTube Dataset

MineDojo provides an extensive suite of APIs to interact
with the Minecraft environment. However, it is still an ardu-
ous challenge for agents to complete long-term tasks with
only online experiences, owing to the sparsity of rewards and
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the vast exploration space. Fortunately, the internet is awash
with copious amounts of Minecraft-related data, which har-
bors a wealth of weak-labeled or even unlabelled Minecraft
knowledge, including crucial entities, plausible motions,
and common-sense event processes. In MineDojo [9], a
total of 640K video clips (8∼16 seconds/clip) sourced from
730K+ YouTube videos and their corresponding transcripts
are leveraged to train a vision-language model (MineCLIP)
that provides auxiliary reward signals for agents to learn
task-specific strategies efficiently. Due to the limitation of
computing resources, we cannot fully use 730K+ YouTube
videos, which makes a gap between video clips and tasks.
Thus, the quality of the vision-language model is highly
sensitive to the quality of video-text pairs used for training.
Since the specific video-text clip pairs used in MineDojo
have not been released, we construct a neat video-text dataset
on the basis of the internet-scale database.

Our dataset construction is based on the YouTube video
database collected by MineDojo, which comprises over
730K Minecraft videos with a combined duration of 33 years
and 2.2B transcript words. The database is massive in scale
and contains significant noise, due to its nature as an on-
line resource. As illustrated in Figure 2, on one hand, some
videos feature irrelevant game content that may not be con-
ducive to learning basic game concepts. On the other hand,
the alignment between the transcripts and videos may not
always be precise, leading to temporal or content discrepan-
cies that could hinder the learning of semantic events for the
vision-language model. We aim to cover the essential infor-
mation in the Minecraft environment, including key entities
and basic semantic events, with a smaller amount of data.
To achieve this, we employed a two-step filtering process to
construct a neat video-text dataset.

Content Filtering. To begin with, we employed transcript-
based filtering to ensure that the video content in our dataset
is relevant to the key entities in Minecraft, as shown in Fig-
ure 1, thus facilitating the learning of basic game concepts.
As the fundamental elements of Minecraft, the key entities,
e.g., stones, trees, and sheep, are shared between tasks in
MineDojo and videos from YouTubers. Specifically, we
identify entity keywords in the transcripts with a handmade
keyword list and extract transcript clips of a fixed context
length L to encompass as many keywords as possible. The
extracted transcript clips serve as the text part of our dataset
and determine the location of corresponding video clips.

Correlation Filtering. Secondly, we aim to find video clips
that are highly correlated with the extracted transcript clips
to ensure the alignment between the text and video modali-
ties. As the reasonable start and end timestamps of the video
clips do not necessarily coincide with the corresponding tran-
scripts clips, we adopt a method of aligning the center points
of the transcript and video clips for possible semantic over-
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Figure 3: Distribution of correlation score of video-text pairs
with and without correlation filtering in YouTube Dataset.

lap content and we extract video clips of a fixed duration D.
However, even with this approach, we cannot guarantee con-
sistency between the video content and the transcript content.
Therefore, we utilize the pre-trained MineCLIP model to
obtain the embeddings of selected video clips and transcript
clips. Then, we calculate the cosine similarity distribution
of their embeddings to represent their correlation. In more
detail, we perform a second round of filtering, selecting from
the top k% of video clips whose embedding is closest to the
embedding of the corresponding transcript clips. We con-
struct a dataset with a stronger content correlation between
the video and transcript clips, as shown in Figure 3.

In terms of scale, we apply the aforementioned two-step
approach to construct a training set of 640K video-text clip
pairs and extract additional 4K pairs for validation of video-
text retrieval. For the constants of the approach, we set
L, D, and k to 25 words, 16 seconds and 50, respectively.
This means that our dataset contains only 1 week’s total
duration of videos and 0.16B words, significantly smaller
than the scale of the original database. Importantly, we
will release our YouTube dataset by specifying transcript
clips and the corresponding timestamps of the videos in the
original database.

5. CLIP4MC
For the RL training procedure, we expect the learned

vision-language model can provide a high-quality reward
signal without any domain adaptation techniques. As it
eliminates the need to manually engineer the reward function
for each MineDojo task, the agent can continuously learn
from open-ended tasks.

Given a video snippet V and a language prompt G, the
vision-language model outputs a correlation score, C, that
measures the similarity between the video snippet and the
language prompt. Ideally, if the agent performs behaviors
following the description of the language prompt, the vision-
language model will generate a higher correlation score,
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Figure 4: Overall architecture of CLIP4MC. The model consists of three encoders, i.e., video, motion, and text encoders.
Note that video and motion encoders aim to extract the embeddings from the video snippet at the entity and action levels,
respectively. Correlation scores are used to construct the auxiliary reward signal for RL training.

leading to a higher reward. Otherwise, the agent will be
given a lower reward.

5.1. Overall Architecture

Intuitively, only when the agent makes the right behavior
toward the right entity, the agent shall be given a higher
reward. CLIP4MC follows such a principle. Figure 4 de-
picts the overall architecture of CLIP4MC, which consists
of a video encoder, a motion encoder, a text encoder, and a
similarity calculator. We have two encoders to extract two
different levels of video embeddings, i.e., entity level and
motion level.

Video Encoder. To generate entity-level video embedding,
zv, we follow the same design as MineCLIP [9]. All the
video frames first go through the spatial transformer to ob-
tain a sequence of frame features. The temporal transformer
is then utilized to summarize the sequence of frame features
into a single video embedding. CLIP Adapter further pro-
cesses the video embedding for better features. Note that
we initialize the weights of the spatial transformer from the
checkpoint of CLIP [22] and only the last two layers are fine-
tuned during training. Empirically, we found out the video
encoder (essentially MineCLIP) can provide a bond between
the entities and the language prompts and give a similar high
reward as long as the target entities are in the video frames.
However, such a reward is not instructive enough for RL
tasks.

Motion Encoder. Further, we explicitly pilot the temporal
transformer to encode motion embeddings. Normally, two
consecutive or spaced frames contain entity displacement,

which implies the actual actions with different amplitudes.
Motivated by this, we stack two frame features with differ-
ent intervals as action representations. Note that the frame
features are reused from the video encoder. The temporal
transformer then processes all representations to obtain the
motion features separately.

For the motion features from the same interval, we again
summarize them via the temporal transformer and obtain one
motion embedding of this interval. The multi-interval motion
embeddings, z1:jm , capture richer information about actual
actions. The final step is to compress the multi-interval mo-
tion embeddings into one embedding. Empirically, we found
out that max or average pooling operation cannot summarize
the final motion embedding well. Therefore, another fusion
transformer is adopted to generate the final motion embed-
ding, zm. Importantly, the temporal transformers are shared
across different encoders, i.e., video and motion encoders,
for fast convergence.

Text Encoder. We also directly utilize the architecture from
the CLIP to extract the text embedding, zt. We initialized
the weights from the checkpoint of CLIP and only the last
two layers of the text encoder are finetuned during training.

Similarity Calculator. After extracting the embeddings of
input from different modalities, the final stage comes to the
similarity calculation. The similarity function s(V,G) that
measures the correlation score, C, between the video snippet
and the language prompt is defined as the cosine similarity:

s(V,G) =
z>v zt

2‖zv‖‖zt‖
+

z>mzt
2‖zm‖‖zt‖

.
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5.2. Training

Contrastive Learning. For CLIP4MC training, we use a
contrastive loss [21] to learn the correspondence between
video snippet and language prompt. In more detail, we aim
to minimize the sum of the multi-modal contrastive losses,
including video-to-text, text-to-video, motion-to-text, and
text-to-motion:

L =−
∑

(zv,zm,zt)∈B

(
log NCE(zv, zt) + log NCE(zt, zv)

+ λ log NCE(zm, zt) + λ log NCE(zt, zm)
)
,

where B is the batch containing sampled video-text pairs,
λ is the weight coefficient, and NCE(·, ·) is the contrastive
loss that calculates the similarity of two inputs. To illustrate,
the video-to-text contrastive loss is given by

NCE(zv, zt) =
exp(zv · z+t /τ)∑

z∈{z+t ,z
−
t }

exp(zv · z/τ)
,

where τ is a temperature hyperparameter, z+t is the positive
text embedding matching with the video embedding zv , and
{z−t } are negative text embeddings that are implicitly formed
by other text clips in the training batch. Other contrastive
losses, i.e., text-to-video, motion-to-text, and text-to-motion,
are defined in the same way.

RL Training. For RL training, the first step is reward gen-
eration. At timestep t, we concatenate the agent’s latest 16
egocentric RGB frames in a temporal window to form a
video snippet, Vt. CLIP4MC outputs the probability PG,t
that calculates the similarity of Vt to the task prompt, G,
against all other negative prompts. To compute the reward,
we further process the raw probability as previous work [9]
rt = max(PG,t− 1

Nt
, 0), whereNt is the number of prompts

passed to CLIP4MC. Note that CLIP4MC can handle unseen
language prompts without any further finetuning.

The ultimate goal is to train a policy network that takes
as input raw pixels and other structural data and outputs dis-
crete actions to accomplish the task that is described by the
language prompt, G. We use Proximal Policy Optimization
(PPO) [24] as our RL training backbone and the policy is
trained on the CLIP4MC reward together with the sparse
task-completion reward if any. The policy input contains
several modality-specific components and more details can
be found in Appendix. In addition, self-imitation learning
(SI) [20] is used to further improve the sample efficiency
as MineCLIP [9], because computing the reward using a
vision-language model in the loop makes the training more
expensive. The training phases alternate between the PPO
phase and the SI phase.

In the next section, we will show that CLIP4MC can
provide a more reliable reward signal that accelerates the

learning of RL tasks compared with other methods. Im-
portantly, a model that can achieve better performance on
video-text retrieval metrics, e.g., R@1, is not necessarily
able to provide RL-friendly reward signals.

6. Experiments
In this section, we conduct a comprehensive evaluation

and analysis of our proposed model, CLIP4MC, utilizing the
open-ended platform, MineDojo. This platform features a
benchmark suite comprised of thousands of diverse, open-
ended Minecraft tasks designed for embodied agents.

We compare CLIP4MC against the following baselines:

1. MineCLIP(pre-trained) refers to the officially re-
leased MineCLIP model by MineDojo [9]. It is a variant
of the video-text retrieval method, CLIP4CLIP [18].

2. MineCLIP(scratch) uses the same architecture as
MineCLIP(pre-trained) but is trained from scratch on
our YouTube dataset. It also serves as the ablation of
CLIP4MC without the motion encoder.

3. CLIP4MC-single is another ablation of CLIP4MC,
where the motion encoder only processes the motion
representations with one interval.

Note that CLIP4MC, MineCLIP(scratch), and CLIP4MC-
single are trained on our YouTube dataset. Specifically, we
trained these models for 20 epochs and select the models
with the highest performance on RL tasks. Please refer to
Appendix for more training details. All results are presented
in terms of the mean and standard deviation of five runs with
different random seeds.

6.1. Environment Settings

As mentioned in Section 3, there are four categories of
Programmatic tasks, i.e. Harvest, Combat, Survival, and
Tech Tree. However, the goals of Survival and Tech Tree
tasks are more complex and the corresponding language
prompts are too abstract. Thus, it is hard for the agent to
achieve the final goal without additional subgoal decomposi-
tion and planning. Surprisingly, all the methods, including
MineCLIP(pre-trained), also fail in Combat tasks (nearly
zero success rate). Similar results are also found in recent
work [5]. This may be due to different experimental settings,
such as episode length. A thorough investigation of Combat
tasks is left as future work.

To comprehensively evaluate our proposed model, we
conduct experiments on six different RL tasks featuring
diverse domain-specific entities (e.g., animals, resources,
terrains, and tools). These tasks are either built-in tasks in
the MineDojo benchmark suite, or designed by ourselves.
Based on their semantic definitions, we group these six RL
tasks into two categories: Harvest and Finding. To guarantee
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Figure 5: Learning curves of CLIP4MC and baselines in six Programmatic tasks of MineDojo. Note that CLIP4MC, CLIP4MC-
single, and MineCLIP(scratch) are trained on our YouTube dataset. All results are presented in terms of the mean and standard
deviation of five runs with different random seeds.

a fair comparison, we adopt the most hyperparameters of RL
training from MineCLIP [9] for all tasks and all methods. We
only adjust the batch and buffer size to fit our computation
resource.

Harvest Task. There are four harvest tasks in total, each
requiring the agent to obtain a specific item: one sunflower

, one leaf , one bucket of milk , and one wool

. The task to harvest one sunflower was designed by
ourselves, and the other three are built-in tasks in MineDojo.
To successfully complete these tasks, the agent is initialized
in various biomes with specific tools that are necessary to
obtain the target item in Minecraft. A harvest task is regarded
as successful when the target item is obtained by the agent
with a specified quantity. In addition, a language prompt for

the task of harvesting milk is, “obtain milk from a cow
using an empty bucket.”

Finding Task. We also include two finding tasks, in which
the agent is tasked with locating a specific target object,

such as a cow or a sheep . These finding tasks are
not from the MineDojo benchmark suite but are specially
designed to assess the agent’s ability to efficiently explore
the environment. In Minecraft, each block is 1x1 square. To
initialize our experiment, we randomly spawn a target object

in a 60x60 square area, while the agent is positioned at the
center of the area. A task is considered successful when two
conditions are met: the target object is within the agent’s
field of view, and the Euclidean distance between the agent
and the target object must be less than 3. We use the built-in
lidar function to detect whether the target object is within
the agent’s field of view. A natural language prompt for the

task of finding cow could be “find a cow in the plain
and the cow is nearby.” More details about the environment
settings can be found in Appendix.

6.2. Results

RL Results. Figure 5 shows the learning curves of all the
methods regarding the success rate. CLIP4MC achieves bet-
ter performance than MineCLIP(pre-trained) in all the tasks
except for picking a leaf where they perform comparably. It
is also shown that the RL training based on MineCLIP(pre-
trained) is highly unstable. Note that these two models are
trained on two different datasets. The comparison may not
be fair since the difference in the key entity distribution of
the dataset can affect the models’ performance on different
tasks. In addition, the difference in training details could
also impact the final results.

Moreover, CLIP4MC outperforms MineCLIP(scratch)
and CLIP4MC-simple by converging to the highest success
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Figure 6: Illustration of learned reward function of CLIP4MC (upper panel) and MineCLIP(pre-trained) (lower panel). For
each row, the first three screenshots are from Milk a Cow and the last three screenshots are from Sheer Wool. The key entities
are boxed in yellow and the reward signal, r, is shown in the white box.

rate in all six RL tasks. It demonstrates the benefits brought
by the motion encoder. In more detail, it turns out that
the usage of MineCLIP does not fully exploit the temporal
relationship of video snippets. It is hard to learn motion fea-
tures with a temporal transformer by only relying on video
embedding. The improvement of CLIP4MC over CLIP4MC-
simple is attributed to CLIP4MC’s ability to capture more
extensive and detailed motion features with different am-
plitudes. Intuitively, multi-interval action representations
contain temporal correlations of short-term and long-term
segments. Therefore, the motion encoder is more likely to
obtain useful features that match the behaviors reflected in
the language prompts.

Video-Text Retrieval Results. Table 1 shows the results of
text-to-video retrieval on the test set. Note that the ∗ symbol
means the model is trained on the YouTube dataset without
correlation filtering. From the results, the models trained
on the dataset without correlation filtering obtain worse per-
formance than those trained on our YouTube dataset. In
addition, they also fail in most RL tasks. The results demon-
strate the superiority and necessity of our proposed YouTube
dataset.

Moreover, we found a model that can achieve better per-
formance on video-text retrieval metrics is not necessarily
able to provide RL-friendly reward signals. In more detail,
CLIP4MC achieves the best performance on RL tasks, but
CLIP4MC-simple obtained the best R@1 value. Through
the model analysis in Section 6.3, we provide one of the
possible answers.

6.3. Model Analysis

In this section, we conduct model analysis by extracting
a series of screenshots in an episode. Figure 6 shows the
learned reward function of CLIP4MC and MineCLIP(pre-
trained) in two tasks. For MinCLIP(pre-trained), we can
find that it provides a tight bond between the entities and the

Table 1: Results of video-to-text retrieval on the test set. We
train these models for 20 epochs and select the models with
the highest R@1 value on the test set, respectively. The best
results are shown in bold.

Methods R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓
CLIP4MC 11.9 25.1 33.1 40.0 270.3

CLIP4MC-simple 12.3 25.1 32.5 41.0 281.3
MineCLIP(scratch) 12.2 26.0 33.4 38.0 278.1

CLIP4MC* 10.7 23.1 30.5 46.0 281.8
CLIP4MC-simple* 10.5 22.8 29.8 49.0 291.6

MineCLIP(scratch)* 10.4 21.4 28.8 49.0 301.5

language prompts. However, if the agent can get a higher
reward far away from the entity, it prefers to choose to stay,
rather than approach the entity. Therefore, further explo-
ration is relatively hard and this may explain its unstable
learning procedure of RL tasks.

On the contrary, though not always, CLIP4MC can learn
a reward signal that gradually increases as the agent ap-
proaches the entity. Under such a reward function, agents
are more likely to explore the right actions moving toward
the targets. Note that we can observe a similar phenomenon
in both tasks.

7. Conclusions
In this paper, we first bring up three key issues we need

to solve for learning a vision-language model as the univer-
sal reward function for open-ended RL tasks. To address
the issue of whether the agent has made the right action
toward the right target, we propose an RL-friendly vision-
language model. It can align actions implicitly contained in
the video and transcript clips in addition to entities. More-
over, we construct and release a neat vision-language dataset
for Minecraft based on YouTube videos from MineDojo.
Empirically, our method can provide a more friendly reward
signal for the RL training procedure.
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A. Environment Details

Environment Initialization. Table 1 outlines how we set up and initialize the environment for each harvest task. Tabel 2
outlines the environment configuration for each finding task.

Table 1: Environment Setup for Harvest Tasks

Harvest Item Initialized Tool Biome

milk empty bucket plains

wool shears plains

leaf shears jungle

sunflower diamond shovel sunflower plains

Table 2: Environment Setup for Finding Tasks

Target Item Initialized Tool Biome

cow barehand plains

sheep barehand plains

Biomes. As described in the task description, our model was tested in a simulation environment featuring three distinct
terrains: jungle, plains, and sunflower plains. Each terrain presents unique challenges for our RL tasks. Specifically, while the
plains offer a wider field of view, resources and targets are situated further away from the agent. Conversely, the jungle terrain
features resources and targets that are closer to the agent, but the terrain is bumpier and presents additional obstacles. Figure 1
shows the biomes of plains, sunflower plains, and jungle in Minecraft, respectively.

Figure 1: Biomes of plains, sunflower plains, and jungle (from left to right).

Observation Space. To enable the creation of multi-task and continually learning agents that can adapt to new scenarios
and tasks, MineDojo provides unified observation and action spaces. The observation space mainly includes 9 parts. Table 3
provides detailed descriptions of the observation space. For more details, please refer to MineDojo’s [9] observation space.

Action Space. The action space is an 8-dimensional multi-discrete space, including moving actions (forward, backward,
camera actions, etc.) and functional actions (attack, use, craft, etc.). At each step, the agent chooses one movement action and
one optional functional action. Table 4 summarizes the action space in the Minecraft environment. For more details, please
refer to MineDojo’s [9] action space.
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Table 3: Observation Space of MineDojo Environment

Observation Descriptions

Egocentric RGB fram
RGB frames provide an egocentric view of the running Minecraft client;
The shape height (H) and width (W) are specified by argument image size.
In our experiment, it is (160, 256).

Equipment Equipment observation includes names, quantities, and durability of agent’s equipment.
They are flattened with the order of “main hand, foot, leg, body, head, off hand”.

Inventory Inventory observation includes names, quantities, and durability of items in agent’s inventory.
There are 36 slots in the inventory, including 10 hotbar slots and 26 inventory slots.

Inventory Change The features on inventory change can help the agent associate the inventory with its activities.

Voxels
Voxels observation refers to the 3x3x3 surrounding blocks around the agent.
This type of observation is similar to how human players perceive their surrounding blocks.
It includes names and properties of blocks.

Life Statistics Life statistics include agent’s health, armor, food saturation, etc.
It can be regarded as a vector representation of the heads-up display

Location Statistics Location statistics include information about the terrain the agent currently occupies.
It also includes agent’s location and compass.

Nearby Tools This observation indicates if a crafting table or a furnace are nearby.
Both are important tools for crafting/smelting new items.

Damage Source Damage source tells information about damage taken by the agent.
It includes the damage amount and properties of damage.

Table 4: Action Space of MineDojo Environment

Index Descriptions Num of Actions

0 Forward and backward 3
1 Move left and right 3
2 Jump, sneak, and sprint 4
3 Camera delta pitch 25
4 Camera delta yaw 25
5 Functional actions 8
6 Argument for “craft” 244
7 Argument for “equip”, “place”, and “destroy” 36

B. RL Training Details

During the RL training stage, we adopt an algorithm pipeline similar to MineDojo [9]. We apply both Proximal Policy
Optimization (PPO) algorithm and Self-Imitation Learning (SIL) [20] by storing the trajectories with high clip reward values
in a buffer. We then alternated between PPO and SIL gradient steps during the training process. The hybrid method enables us
to leverage their respective strengths and achieve better results than using either method alone. The training hyper-parameters
for the RL task are listed in Table 5.
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Table 5: Training hyper-parameters for RL&IL.

Hyperparameter Value

Optimizer Adam
LR 1e-4

RL discount factor 0.99
Lambda for GAE 0.95
Steps per episode 200
Buffer size for IL 500
Imitate frequency per 100 epochs

Number of workers (CPU) 1
Parallel GPUs 1

MineDojo image size 160 × 256
Clip ratio 0.2

Early stopping KL 0.01

C. Details on Dataset
In this section, we provide more details about the dataset, including the construction process and a sample of the dataset

format. The construction steps of the dataset are as follows:

1. Obtain YouTube videos and corresponding transcripts from the MineDojo database.

2. Manually construct a list of keywords related to Minecraft gameplay.

3. For each video with a transcript, annotate all keywords (including different forms of keywords such as combined words,
plural forms, etc.) appearing in the transcript.

4. Slide a window of length L words on the transcript until the first keyword in the window is about to leave the window.
Use the midpoint between the first and last keyword in the window as the center to extract a transcript clip of length L
words.

5. Extract all non-overlapping transcript clips from each video with a transcript following step 4.

6. For each transcript clip, calculate the central timestamp corresponding to the clip based on the transcript timestamps. Use
this central timestamp to extract a video clip of duration D seconds from the video.

7. From all the video-clip pairs extracted in the previous steps, extract M pairs and encode these pairs using a pre-trained
MineCLIP attention variant to calculate the cosine similarity.

8. Select the top k% pairs with the highest cosine similarity as the training set from the M pairs.

9. Randomly select M ′ pairs in addition to the M pairs as the validation set.

The values of the parameters used in the above process are listed in Table 6. Specifically, steps 2-6 of the process
constitute content filtering, while steps 7-8 are correlation filtering. Following this process, we construct a training set of
size 640K and a test set of size 4096. Both of the filtering methods have been applied to construct the training set, while
only content filtering is used for the test set to reflect the distribution of data in the database. we release our YouTube
dataset by specifying the transcript clips and the corresponding timestamps of the videos in the original database. The link is
https://drive.google.com/drive/folders/19vDy2jaooF74MDt3dLAsyLRpRcUFKVCY?usp=sharing.

D. CLIP4MC Training
This section describes the training process of CLIP4MC. The training process for CLIP4MC was adapted from the training

processes for CLIP4CLIP and MineCLIP. Practically, we trained all models on the 640K training set. For each video-text
clip pair, we obtain 16 frames of RGB image through equidistant sampling and normalize each channel separately. During
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Table 6: Values of parameters used in the dataset construction process.

Parameter Value

L 25
D 16
M 1,280,000
k 50
M ′ 4,096

training, we use random resize crops for data augmentation. We use cosine learning rate annealing with 320 gradient steps of
warming up. We only fine-tune the last two layers of pre-trained CLIP encoders, and we apply a module-wise learning rate
decay (learning rate decays along with the modules) for better fine-tuning. Training is performed on 1 node of 4 × V100 GPUs
with FP16 mixed precision via the PyTorch native amp module. All hyperparameters are listed in Table 7.

Table 7: Training hyperparameters for CLIP4MC.

Hyperparameter Value

LR schedule Cosine with warmup
Warmup steps 320

LR 1.5e-4
Weight decay 0.2

Layerwise LR decay 0.65
Batch size per GPU 100

Parallel GPUs 4
Video resolution 160 × 256

Number of frames 16
Image encoder ViT-B/16

E. CLIP4MC Architecture
Input. The length of each transcript clip is 25 words, while the length of the video is 16 seconds. The resolution of the
video stream is 160 × 256, with 5 fps. In other words, the video stream is 80 frames. As for the video snippet, we further
equidistantly sample it to 16 frames for fewer computing resources.

Text Encoder. Referring to the design of MineCLIP [9], the text encoder is a 12-layer 512-width GPT model, which has 8
attention heads. The textual input is tokenized via the tokenizer used in CLIP and is padded/truncated to 77 tokens. The initial
weights of the model use the public checkpoint of CLIP and only finetune the last two layers during training.

Spatial Encoder. The Spatial encoder is a frame-wise image encoder referred to the design of MineCLIP [9], which uses
the ViT-B/16 architecture to compute a 512-D embedding for each frame. The initial weights of the model use the public
checkpoint of OpenAI CLIP, and only the last two layers are finetuned during training.

Temporal Transformer. The temporal Transformer is a shared module across video and motion encoders for fast con-
vergence, which is a 2-depth 8-head Transformer module whose input dimension is 512 and maximum sequence length is
32.

Multi-interval Fusion Transformer. Multi-interval fusion transformer is a Transformer model similar to Temporal Trans-
former, which fuses motion information of different intervals. The architecture is exactly the same as the Temporal Transformer,
except that the parameters are not shared.
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Adapter. In order to get better embedding, we use an adapter to map video embedding, text embedding, and motion
embedding. The adapter models are 2-layer MLP, except the text adapter which is an identity.

F. Agent Architecture
Like MineDojo [9], our policy framework is also composed of three components: an encoder for input features, a policy

head, and a value function head. In order to deal with cross-modal observations, the feature extractor includes a variety of
modality-specific components as described in Table 8.

• RGB frame: To optimize for computational efficiency and equip the agent with strong visual representations from scratch,
we use the fixed frame-wise image encoder from CLIP4MC to process RGB frames.

• Yaw and Pitch: We first compute sin(·) and cos(·) features respectively, then pass them through CompassMLP.

• GPS: normalize and pass through GPSMLP.

• Voxel: To process the 3 × 3 × 3 voxels surrounding the agent, we embed discrete block names as dense vectors, flatten
them, and pass them through VoxelEncoder.

• Previous action: Our agent relies on its immediate previous action, which is embedded and processed through PrevAc-
tionEmb, which is a conditioning factor.

• BiomeID: To perceive the discrepancy in different environments, we embed BiomeID as a vector through an MLP named
BiomeIDEmb.

The features from each modality are combined by concatenation, passed through an additional feature fusion network
(FeatureFusion), and then directed into both the policy head and value function head. The policy head is modeled using an
MLP (PolicyMLP), which transforms the input feature vectors into an action probability distribution. Similarly, ValueMLP is
used to estimate the value function, conditioned on the same input features. Note that we do not use all the information of the
observation space. Only partial observation information will be sent into the policy network.

Table 8: Agent Networks

Network Details

Policy&ValueMLP hidden dim: 256
hidden depth: 3

CompassMLP
hidden dim: 128
output dim: 128
hidden depth: 2

GPSMLP
hidden dim: 128
output dim: 128
hidden depth: 2

VoxelEncoder

embed dim: 8
hidden dim: 128
output dim: 128
hidden depth: 2

BiomeIDEmb embed dim: 8

PrevActionEmb embed dim: 8

FeatureFusion output dim: 512
hidden depth: 0
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